基于对抗神经网络图像超分辨率算法代码
时间: 2023-09-07 18:17:55 浏览: 105
对抗神经网络图像超分辨率 (GANs-based Image Super-Resolution) 是一种深度学习算法,旨在通过增加图像的分辨率来提高图像质量。以下是一个基于 PyTorch 的 GANs-based Image Super-Resolution 算法的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# 定义判别器
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.conv4 = nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1)
self.bn4 = nn.BatchNorm2d(512)
self.conv5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0)
def forward(self, x):
x = nn.functional.leaky_relu(self.conv1(x), 0.2, inplace=True)
x = nn.functional.leaky_relu(self.bn2(self.conv2(x)), 0.2, inplace=True)
x = nn.functional.leaky_relu(self.bn3(self.conv3(x)), 0.2, inplace=True)
x = nn.functional.leaky_relu(self.bn4(self.conv4(x)), 0.2, inplace=True)
x = torch.sigmoid(self.conv5(x))
return x
# 定义生成器
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=9, stride=1, padding=4)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(32)
self.conv3 = nn.Conv2d(32, 3, kernel_size=5, stride=1, padding=2)
def forward(self, x):
x = nn.functional.relu(self.bn1(self.conv1(x)))
x = nn.functional.relu(self.bn2(self.conv2(x)))
x = torch.tanh(self.conv3(x))
return x
# 参数设置
batch_size = 32
epochs = 100
lr = 0.0002
beta1 = 0.5
beta2 = 0.999
# 数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])
train_data = datasets.ImageFolder(root='./data', transform=transform)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
# 模型初始化
G = Generator()
D = Discriminator()
G.cuda()
D.cuda()
# 损失函数和优化器
criterion = nn.BCELoss()
optimizerG = optim.Adam(G.parameters(), lr=lr, betas=(beta1, beta2))
optimizerD = optim.Adam(D.parameters(), lr=lr, betas=(beta1, beta2))
# 训练模型
for epoch in range(epochs):
for i, (data, _) in enumerate(train_loader):
# 真实数据
real = Variable(data.cuda())
real_target = Variable(torch.ones(real.size(0), 1).cuda())
# 噪声数据
noise = Variable(torch.randn(real.size(0), 3, 256, 256).cuda())
fake = G(noise)
fake_target = Variable(torch.zeros(fake.size(0), 1).cuda())
# 训练判别器
optimizerD.zero_grad()
real_loss = criterion(D(real), real_target)
fake_loss = criterion(D(fake.detach()), fake_target)
d_loss = real_loss + fake_loss
d_loss.backward()
optimizerD.step()
# 训练生成器
optimizerG.zero_grad()
fake_loss = criterion(D(fake), real_target)
g_loss = fake_loss
g_loss.backward()
optimizerG.step()
# 打印损失值
if i % 10 == 0:
print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f' % (epoch, epochs, i, len(train_loader), d_loss.item(), g_loss.item()))
# 保存模型
torch.save(G.state_dict(), './generator.pth')
```
此代码定义了一个生成器和一个判别器,使用了对抗训练算法来提高图像分辨率。在训练过程中,生成器生成虚假的图像,判别器则用来区分真实图像和虚假图像。随着训练的进行,生成器逐渐学习到如何生成更加真实的图像,从而提高图像分辨率。
阅读全文