请用指针写一段计算两点之间的距离的python代码
时间: 2024-05-01 22:16:37 浏览: 74
这是一段计算两点之间距离的Python代码,使用了指针:
```python
import math
def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
distance = math.sqrt(dx*dx + dy*dy)
return distance
x1 = 1
y1 = 2
x2 = 3
y2 = 4
print("Distance between ({}, {}) and ({}, {}) is {}".format(x1, y1, x2, y2, distance(x1, y1, x2, y2)))
```
输出:
```
Distance between (1, 2) and (3, 4) is 2.8284271247461903
```
这个函数接收四个参数,分别代表两个点的坐标。在函数内,我们将这两个点的 x 和 y 坐标的差计算出来,然后使用勾股定理计算它们之间的距离。最后,我们返回计算出的距离。
在主程序中,我们设置了两个点的坐标,然后调用 distance 函数计算它们之间的距离,并将结果打印出来。
相关问题
写一段python代码实现用指针网络深度强化学习AC算法解决三维TSP避障问题,两点之间的距离使用欧氏距离,其中P(x,y,z)点为旅行商要经过的城市点,数量不固定,O(x,y,z)是障碍点,数量也不固定,路径遇到障碍点要避开,代码完毕后用伪代码写出整个流程
在Python中,使用指针网络(Pointer Network)结合深度强化学习(Deep Reinforcement Learning, DRL)如Actor-Critic (AC) 算法解决三维TSP(Traveling Salesman Problem)避障问题是一个复杂的过程。由于涉及到深度学习库(如TensorFlow或PyTorch)、环境模型、策略网络等,这里提供一个简化版的伪代码概述以及部分核心函数的示例,实际完整实现会相当庞大。
```python
# 引入必要的库
import numpy as np
import gym
from keras.models import Model, Input
from keras.layers import Dense, LSTM, Embedding
# 定义环境类(假设基于gym)
class TSPObs(gym.Env):
def __init__(self, cities, obstacles):
# 初始化城市、障碍点等信息
# 动作空间定义:选择下一个城市的索引
action_space = gym.spaces.Discrete(len(cities))
# 隐藏层结构
input_dim = len(cities)
lstm_units = 128
embedding_size = 64
# 构建Actor模型(策略网络)
inputs = Input(shape=(None,))
x = Embedding(input_dim, embedding_size)(inputs)
x = LSTM(lstm_units)(x)
policy_logits = Dense(action_space.n, activation='softmax')(x)
actor_model = Model(inputs=inputs, outputs=policy_logits)
# 构建Critic模型(价值网络)
critic_inputs = inputs
critic_value = Dense(1)(x)
critic_model = Model(inputs=critic_inputs, outputs=critic_value)
# Actor-Critic算法的核心函数
def act_and_train(states, actor, critic, memory, optimizer):
policy = actor.predict(states)
action = np.random.choice(np.arange(policy.shape[1]), p=policy.flatten())
next_state, reward, done, _ = env.step(action) # 环境模拟
critic.train_on_batch(states, rewards) # 更新价值网络
memory.add((states, action, reward, next_state, done)) # 存储经验
if done:
states = np.zeros_like(states) # 新回合开始,初始化状态
else:
states = next_state
actor.train_on_batch(states, actor.predict(states)) # 使用策略更新
return states
# 其他辅助函数和记忆体管理(Memory),省略...
```
**伪代码流程:**
1. 初始化环境,定义城市和障碍点。
2. 创建Actor和Critic模型。
3. 主循环:
a. 获取当前状态。
b. 根据Actor模型选择动作(避开障碍)。
c. 执行动作,在环境中获取新状态、奖励和是否到达终点。
d. 更新价值网络(Critic)和策略网络(Actor)。
e. 存储经验和回放学习。
4. 当达到预定条件(例如一定回合数或达到最低平均奖励)时,训练完成。
注意:这个伪代码仅给出了基本框架,实际实现需要详细的设计环境类、记忆库、优化器、奖励计算、探索策略等功能,并可能还需要利用更复杂的神经网络架构和更详细的训练过程。如果你对完整的代码感兴趣,建议参考深度学习教程或者相关的开源项目。
rrt*-connect的python代码
### 回答1:
rrt*-connect是一种路径规划算法,用于在给定的环境中找到两个已知点之间的最优路径。下面是一个基于Python语言实现的简单示例代码:
```python
import numpy as np
import matplotlib.pyplot as plt
# 初始化rrt*-connect算法的节点类
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.parent = None
# 计算两个节点之间的距离
def distance(node1, node2):
return np.sqrt((node1.x - node2.x)**2 + (node1.y - node2.y)**2)
# 检查两个节点之间是否存在障碍物
def check_obstacle(node1, node2, obstacle_list):
for obstacle in obstacle_list:
distance_to_obstacle = np.sqrt((obstacle[0] - node1.x)**2 + (obstacle[1] - node1.y)**2)
if distance_to_obstacle <= 1.0:
return True
return False
# 使用rrt*-connect算法搜索路径
def rrt_connect(start, goal, obstacle_list):
nodes_start = [start]
nodes_goal = [goal]
while True:
# 从起点开始扩展树
random_node = Node(np.random.uniform(0, 10), np.random.uniform(0, 10))
nearest_node = nodes_start[0]
for node in nodes_start:
if distance(node, random_node) < distance(nearest_node, random_node):
nearest_node = node
if check_obstacle(nearest_node, random_node, obstacle_list):
continue
new_node = Node(random_node.x, random_node.y)
new_node.parent = nearest_node
nodes_start.append(new_node)
# 从终点开始扩展树
random_node = Node(np.random.uniform(0, 10), np.random.uniform(0, 10))
nearest_node = nodes_goal[0]
for node in nodes_goal:
if distance(node, random_node) < distance(nearest_node, random_node):
nearest_node = node
if check_obstacle(nearest_node, random_node, obstacle_list):
continue
new_node = Node(random_node.x, random_node.y)
new_node.parent = nearest_node
nodes_goal.append(new_node)
# 检查两颗树是否连接
for node1 in nodes_start:
for node2 in nodes_goal:
if distance(node1, node2) <= 1.0 and not check_obstacle(node1, node2, obstacle_list):
return nodes_start, nodes_goal
return None, None
# 测试代码
start_node = Node(1, 1)
goal_node = Node(9, 9)
obstacles = [(5, 5), (6, 6), (7, 7)]
path_start, path_goal = rrt_connect(start_node, goal_node, obstacles)
if path_start is not None and path_goal is not None:
path_start.append(path_goal[-1])
path = []
current_node = path_start[-1]
while current_node is not None:
path.append((current_node.x, current_node.y))
current_node = current_node.parent
path.reverse()
print("找到路径:", path)
else:
print("未找到路径")
```
这段代码实现了一个简单的rrt*-connect算法,用于寻找起点和终点之间的最优路径。其中通过定义Node类表示路径上的节点,distance函数计算两个节点间的距离,check_obstacle函数用于检查两个节点间是否存在障碍物。主函数rrt_connect则是使用rrt*-connect算法进行路径搜索,并返回两个树的根节点列表。
最后进行测试,通过rrt_connect函数得到的路径点列表,再逆向遍历节点的parent指针,获取完整的路径。如果找到路径,则将其打印输出,否则输出未找到路径的信息。
### 回答2:
rrt*-connect算法是一种针对路径规划问题的改进型Rapidly-Exploring Random Tree (RRT) 算法。以下是一个简单的rrt*-connect的Python代码示例:
```python
import numpy as np
import matplotlib.pyplot as plt
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.parent = None
def distance(node1, node2):
return np.sqrt((node1.x - node2.x)**2 + (node1.y - node2.y)**2)
def generate_random_node(x_range, y_range):
x = np.random.uniform(x_range[0], x_range[1])
y = np.random.uniform(y_range[0], y_range[1])
return Node(x, y)
def find_nearest_node(node_list, random_node):
distances = [distance(node, random_node) for node in node_list]
nearest_index = np.argmin(distances)
return node_list[nearest_index]
def is_collision_free(node1, node2, obstacles):
# 检查路径上是否有碰撞
# 如果有碰撞,返回False;否则返回True
# 这里省略碰撞检测的具体实现代码
return not collision_detected
def rrt_connect(start, goal, x_range, y_range, obstacles):
nodes = [start]
while True:
random_node = generate_random_node(x_range, y_range)
nearest_node = find_nearest_node(nodes, random_node)
new_node = Node(nearest_node.x + 0.1 * (random_node.x - nearest_node.x),
nearest_node.y + 0.1 * (random_node.y - nearest_node.y))
if is_collision_free(nearest_node, new_node, obstacles):
nodes.append(new_node)
if distance(new_node, goal) < 0.1:
return True, nodes
if len(nodes) % 2 == 0:
nodes = nodes[::-1]
start = Node(1, 1)
goal = Node(5, 5)
x_range = [0, 10]
y_range = [0, 10]
obstacles = [[3, 3], [4, 4]] # 障碍物的位置
success, path = rrt_connect(start, goal, x_range, y_range, obstacles)
if success:
x = [node.x for node in path]
y = [node.y for node in path]
plt.plot(x, y, '-r')
plt.xlim(x_range)
plt.ylim(y_range)
plt.show()
```
这段代码描述了rrt*-connect的主要逻辑。它通过生成随机节点,寻找最近邻节点,并尝试从最近邻节点朝随机节点延伸,然后检查路径是否与障碍物相碰撞。如果延伸的路径安全,则将新节点添加到节点列表中。最终,如果找到一条从起始节点到目标节点的路径,则返回路径节点列表。如果找不到路径,则返回False。代码还包含了绘制路径的部分,以便可视化显示结果。请注意,代码中的碰撞检测部分需要根据具体的碰撞检测算法进行实现。
### 回答3:
rrt*-connect是一种改进版的快速随机树(Rapidly-exploring Random Trees,RRT)算法,用于路径规划。下面是一个使用Python编写的简要实现代码:
```python
import numpy as np
import matplotlib.pyplot as plt
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.parent = None
def dist(self, other):
return np.sqrt((self.x - other.x)**2 + (self.y - other.y)**2)
class RRTConnect:
def __init__(self, start, goal, obstacles, step_size=0.5, max_iters=1000):
self.start = Node(*start)
self.goal = Node(*goal)
self.obstacles = obstacles
self.step_size = step_size
self.max_iters = max_iters
def generate_random_point(self):
x = np.random.uniform(0, 10) # 计划空间的x范围
y = np.random.uniform(0, 10) # 计划空间的y范围
return Node(x, y)
def find_nearest_node(self, tree, point):
distances = [node.dist(point) for node in tree]
return tree[np.argmin(distances)]
def generate_new_node(self, nearest_node, random_node):
distance = nearest_node.dist(random_node)
if distance <= self.step_size:
return random_node
else:
scale = self.step_size / distance
x = nearest_node.x + (random_node.x - nearest_node.x) * scale
y = nearest_node.y + (random_node.y - nearest_node.y) * scale
return Node(x, y)
def is_collision_free(self, node1, node2):
for obstacle in self.obstacles:
if obstacle[0] < node1.x < obstacle[1] and obstacle[2] < node1.y < obstacle[3]:
return False
if obstacle[0] < node2.x < obstacle[1] and obstacle[2] < node2.y < obstacle[3]:
return False
return True
def rrt_connect(self):
tree1 = [self.start]
tree2 = [self.goal]
for _ in range(self.max_iters):
random_node = self.generate_random_point()
nearest_node1 = self.find_nearest_node(tree1, random_node)
nearest_node2 = self.find_nearest_node(tree2, random_node)
new_node1 = self.generate_new_node(nearest_node1, random_node)
new_node2 = self.generate_new_node(nearest_node2, random_node)
if self.is_collision_free(nearest_node1, new_node1):
tree1.append(new_node1)
if self.is_collision_free(nearest_node2, new_node1):
path = self.connect_trees(tree1, tree2, nearest_node1, new_node2)
if path:
return path
if self.is_collision_free(nearest_node2, new_node2):
tree2.append(new_node2)
if self.is_collision_free(nearest_node1, new_node2):
path = self.connect_trees(tree1, tree2, nearest_node1, new_node2)
if path:
return path
return None
def connect_trees(self, tree1, tree2, node1, node2):
path = []
while node1.parent:
path.append([node1.x, node1.y])
node1 = node1.parent
path.append([self.start.x, self.start.y])
path = path[::-1]
while node2.parent:
path.append([node2.x, node2.y])
node2 = node2.parent
path.append([self.goal.x, self.goal.y])
return path
# Usage example:
start = [1, 1] # 起点
goal = [9, 9] # 终点
obstacles = [[3, 4, 2, 5], [7, 9, 6, 8]] # 障碍物坐标范围,例如[x1, x2, y1, y2]
rrt = RRTConnect(start, goal, obstacles)
path = rrt.rrt_connect()
print("路径点坐标:", path)
# 绘制路径
if path:
path = np.array(path)
plt.plot(path[:,0], path[:,1], '-o')
for obstacle in obstacles:
plt.fill([obstacle[0], obstacle[0], obstacle[1], obstacle[1]],
[obstacle[2], obstacle[3], obstacle[3], obstacle[2]],
'r')
plt.xlim(0, 10)
plt.ylim(0, 10)
plt.show()
```
以上是一个简单的RRT*-connect算法的Python实现。代码实现了通过随机扩展树的方式来寻找起点到终点的路径,并考虑了障碍物的碰撞检测。
阅读全文