ngpus_per_node = torch.cuda.device_count()
时间: 2024-04-28 08:27:12 浏览: 135
`ngpus_per_node = torch.cuda.device_count()` 是用于获取当前计算机上可用的 GPU 数量。这行代码使用 PyTorch 库中的 `torch.cuda.device_count()` 函数来获取当前计算机上可用的 GPU 数量,然后将其赋值给变量 `ngpus_per_node`。
在深度学习中,使用 GPU 进行加速是常见的做法。由于深度学习模型通常需要处理大量的数据,使用 CPU 运算往往会非常耗时,而使用 GPU 运算则可以显著加快模型的训练和推断速度。因此,在进行深度学习任务时,通常会使用 GPU 资源来进行计算。
需要注意的是,如果计算机上没有可用的 GPU,`torch.cuda.device_count()` 函数将返回 0。因此,在进行深度学习任务时,需要先检查计算机上是否有可用的 GPU 资源,以确保程序能够正常运行。
相关问题
ngpus_per_node = torch.cuda.device_count() if distributed: dist.init_process_group(backend="nccl") local_rank = int(os.environ["LOCAL_RANK"]) rank = int(os.environ["RANK"]) device = torch.device("cuda", local_rank) if local_rank == 0: print(f"[{os.getpid()}] (rank = {rank}, local_rank = {local_rank}) training...") print("Gpu Device Count : ", ngpus_per_node) else: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') local_rank = 0
这段代码是用来初始化分布式训练环境的。首先会检查当前机器上可用的 GPU 数量,并根据是否进行分布式训练来选择初始化分布式训练环境还是普通的训练环境。如果是分布式训练环境,就会调用 `dist.init_process_group` 方法初始化进程组,然后根据环境变量 `LOCAL_RANK` 和 `RANK` 来分配当前进程的本地 GPU 和进程编号。最后会打印出 GPU 数量和当前进程的信息。如果不是分布式训练环境,则只会选择一个可用的 GPU。
if distributed: dist.init_process_group(backend="nccl") local_rank = int(os.environ["LOCAL_RANK"]) rank = int(os.environ["RANK"]) device = torch.device("cuda", local_rank) if local_rank == 0: print(f"[{os.getpid()}] (rank = {rank}, local_rank = {local_rank}) training...") print("Gpu Device Count : ", ngpus_per_node) else: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') local_rank = 0 rank = 0
这段代码是用于分布式训练的。首先通过判断`distributed`变量是否为True,来确定是否启动分布式训练。如果是分布式训练,则调用`dist.init_process_group`函数初始化进程组,指定使用NCCL作为后端通信库,用于多GPU之间的通信。然后获取本地进程的rank和local_rank,在分布式训练中rank代表全局进程的编号,local_rank代表本地进程的编号。接下来根据`local_rank`获取当前进程使用的GPU设备,并打印相关信息。如果不是分布式训练,则默认使用cpu设备。
阅读全文