可以写一篇关于基于大学生就业数据集算法分析么?使用python3
时间: 2024-03-10 20:46:53 浏览: 116
好的,下面是一篇基于大学生就业数据集的算法分析的Python3代码和注释:
```python
# 导入所需要的库
import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
# 读取数据集
data = pd.read_csv('大学生就业数据集.csv', encoding='utf-8')
# 数据预处理,将非数值型数据转换成数值型数据
data['gender'] = (data['gender'] == '男').astype(int)
data['is_graduate'] = (data['is_graduate'] == '是').astype(int)
data['is_intern'] = (data['is_intern'] == '是').astype(int)
data['is_english'] = (data['is_english'] == '是').astype(int)
data['is_computer'] = (data['is_computer'] == '是').astype(int)
data['is_work'] = (data['is_work'] == '是').astype(int)
# 将数据集分成特征和标签
X = data.drop('is_work', axis=1)
y = data['is_work']
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 创建分类器模型
dtc = DecisionTreeClassifier()
gnb = GaussianNB()
svc = SVC()
mlp = MLPClassifier()
# 训练模型
dtc.fit(X_train, y_train)
gnb.fit(X_train, y_train)
svc.fit(X_train, y_train)
mlp.fit(X_train, y_train)
# 预测测试集数据
y_pred_dtc = dtc.predict(X_test)
y_pred_gnb = gnb.predict(X_test)
y_pred_svc = svc.predict(X_test)
y_pred_mlp = mlp.predict(X_test)
# 输出分类器准确率和分类报告
print('Decision Tree Classifier Accuracy:', accuracy_score(y_test, y_pred_dtc))
print('Decision Tree Classifier Report:', classification_report(y_test, y_pred_dtc))
print('Naive Bayes Classifier Accuracy:', accuracy_score(y_test, y_pred_gnb))
print('Naive Bayes Classifier Report:', classification_report(y_test, y_pred_gnb))
print('Support Vector Machine Classifier Accuracy:', accuracy_score(y_test, y_pred_svc))
print('Support Vector Machine Classifier Report:', classification_report(y_test, y_pred_svc))
print('Neural Network Classifier Accuracy:', accuracy_score(y_test, y_pred_mlp))
print('Neural Network Classifier Report:', classification_report(y_test, y_pred_mlp))
```
上面的代码首先使用Pandas库读取大学生就业数据集,并进行数据预处理,将非数值型数据转换为数值型数据。然后将数据集分为特征和标签,再将数据集分为训练集和测试集。接着创建四个分类器模型:决策树分类器、朴素贝叶斯分类器、支持向量机分类器和神经网络分类器,分别训练四个模型。最后预测测试集数据,并输出分类器准确率和分类报告。
需要注意的是,在实际应用中,需要根据具体问题和需求选择合适的算法,并对数据进行更加细致的处理和分析,以获得更好的预测效果。
阅读全文