from sklearn import datasets from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier import numpy as np iris = datasets.load_iris() X, y = iris.data[:, 1:3], iris.target def CalculateAccuracy(y_test,pred_label): nnz = np.shape(y_test)[0] - np.count_nonzero(pred_label - y_test) acc = 100*nnz/float(np.shape(y_test)[0]) return acc clf1 = KNeighborsClassifier(n_neighbors=2) clf2 = RandomForestClassifier(n_estimators = 2,random_state=1) clf3 = GaussianNB() lr = LogisticRegression() clf1.fit(X, y) clf2.fit(X, y) clf3.fit(X, y) f1 = clf1.predict(X) acc1 = CalculateAccuracy(y, f1) print("accuracy from KNN: "+str(acc1) ) f2 = clf2.predict(X) acc2 = CalculateAccuracy(y, f2) print("accuracy from Random Forest: "+str(acc2) ) f3 = clf3.predict(X) acc3 = CalculateAccuracy(y, f3) print("accuracy from Naive Bayes: "+str(acc3) ) f = [f1,f2,f3] f = np.transpose(f) lr.fit(f, y) final = lr.predict(f) acc4 = CalculateAccuracy(y, final) print("accuracy from Stacking Ensemble: "+str(acc4) )

时间: 2024-04-04 08:34:00 浏览: 13
这段代码是一个简单的机器学习分类器集成方法的实现,使用了KNN、随机森林和朴素贝叶斯三个分类器,并通过逻辑回归将它们的结果进行集成。代码的具体流程如下: 1. 导入所需的库和数据集 iris。 2. 将 iris 数据集中的前两个特征作为输入特征 X,将第三个特征作为输出标签 y。 3. 定义一个计算分类器准确率的函数 CalculateAccuracy。 4. 初始化三个分类器 clf1、clf2 和 clf3,分别用 KNN、随机森林和朴素贝叶斯进行训练。 5. 对于每个分类器,分别进行预测并计算其准确率。 6. 将每个分类器的预测结果合并为一个矩阵 f。 7. 对矩阵 f 进行逻辑回归训练,并使用训练好的模型对 f 进行预测。 8. 计算集成分类器的准确率。 需要注意的是,这个分类器集成方法的实现过程比较简单,只是为了演示集成方法的基本思想,实际应用中可能需要更复杂的集成方式和更多的分类器。
相关问题

在Python中想运行from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA import pandas as pd from sklearn import svm import numpy as np import math import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.model_selection import train_test_split from sklearn import datasets from matplotlib.colors import ListedColormap from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedShuffleSplit,StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_predict from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn import svm from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_auc_score import math import datetime import multiprocessing as mp from sklearn.ensemble import StackingClassifier from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC import random怎么操作

要在Python中运行这些代码,你需要确保已经安装了相应的包。大多数包都可以使用`pip`进行安装。 首先,在命令行中运行以下命令来安装所需的包: ```bash pip install scikit-learn pandas matplotlib numpy ``` 然后,在你的Python脚本中导入所需的库: ```python from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA import pandas as pd from sklearn import svm import numpy as np import math import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.model_selection import train_test_split from sklearn import datasets from matplotlib.colors import ListedColormap from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedShuffleSplit, StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_predict from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score import datetime import multiprocessing as mp from sklearn.ensemble import StackingClassifier from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC import random ``` 请确保在运行这些代码之前,已经安装了所需的Python库。如果遇到任何问题,请确保已正确安装这些库,并且版本与代码兼容。

from sklearn import datasets from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier import numpy as np iris = datasets.load_iris() X, y = iris.data[:, 1:3], iris.target def CalculateAccuracy(y_test,pred_label): nnz = np.shape(y_test)[0] - np.count_nonzero(pred_label - y_test) acc = 100*nnz/float(np.shape(y_test)[0]) return acc clf1 = KNeighborsClassifier(n_neighbors=2) clf2 = RandomForestClassifier(n_estimators = 2,random_state=1) clf3 = GaussianNB() lr = LogisticRegression() clf1.fit(X, y) clf2.fit(X, y) clf3.fit(X, y) f1 = clf1.predict(X) acc1 = CalculateAccuracy(y, f1) print("accuracy from KNN: "+str(acc1) ) f2 = clf2.predict(X) acc2 = CalculateAccuracy(y, f2) print("accuracy from Random Forest: "+str(acc2) ) f3 = clf3.predict(X) acc3 = CalculateAccuracy(y, f3) print("accuracy from Naive Bayes: "+str(acc3) ) f = [f1,f2,f3] f = np.transpose(f) lr.fit(f, y) final = lr.predict(f) acc4 = CalculateAccuracy(y, final) print("accuracy from Stacking Ensemble: "+str(acc4) )解释每行代码

好的,我来为你一行一行地解释这段代码的含义: ```python from sklearn import datasets from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier import numpy as np ``` 这一段代码导入了所需的库和模块,包括了数据集 iris,随机森林分类器、逻辑回归分类器、朴素贝叶斯分类器、KNN分类器和决策树分类器。同时也导入了 NumPy 库,用于数组操作。 ```python iris = datasets.load_iris() X, y = iris.data[:, 1:3], iris.target ``` 这一段代码加载了 iris 数据集,并将 iris 数据集中的前两个特征作为输入特征 X,将第三个特征作为输出标签 y。 ```python def CalculateAccuracy(y_test, pred_label): nnz = np.shape(y_test)[0] - np.count_nonzero(pred_label - y_test) acc = 100*nnz/float(np.shape(y_test)[0]) return acc ``` 这一段代码定义了一个函数 CalculateAccuracy,用于计算分类器的准确率。其中,y_test 表示真实标签,pred_label 表示预测标签。 ```python clf1 = KNeighborsClassifier(n_neighbors=2) clf2 = RandomForestClassifier(n_estimators=2, random_state=1) clf3 = GaussianNB() lr = LogisticRegression() ``` 这一段代码初始化了三个分类器 clf1、clf2 和 clf3,分别用于 KNN、随机森林和朴素贝叶斯分类。另外还初始化了逻辑回归分类器 lr。 ```python clf1.fit(X, y) clf2.fit(X, y) clf3.fit(X, y) ``` 这一段代码使用训练数据 X 和 y 来训练三个分类器 clf1、clf2 和 clf3。 ```python f1 = clf1.predict(X) acc1 = CalculateAccuracy(y, f1) print("accuracy from KNN: "+str(acc1)) ``` 这一段代码使用训练好的 KNN 分类器 clf1 对训练数据 X 进行预测,并使用 CalculateAccuracy 函数计算预测准确率 acc1。 ```python f2 = clf2.predict(X) acc2 = CalculateAccuracy(y, f2) print("accuracy from Random Forest: "+str(acc2)) ``` 这一段代码使用训练好的随机森林分类器 clf2 对训练数据 X 进行预测,并使用 CalculateAccuracy 函数计算预测准确率 acc2。 ```python f3 = clf3.predict(X) acc3 = CalculateAccuracy(y, f3) print("accuracy from Naive Bayes: "+str(acc3)) ``` 这一段代码使用训练好的朴素贝叶斯分类器 clf3 对训练数据 X 进行预测,并使用 CalculateAccuracy 函数计算预测准确率 acc3。 ```python f = [f1, f2, f3] f = np.transpose(f) lr.fit(f, y) final = lr.predict(f) acc4 = CalculateAccuracy(y, final) print("accuracy from Stacking Ensemble: "+str(acc4)) ``` 这一段代码将三个分类器的预测结果合并为一个矩阵 f,并使用逻辑回归分类器 lr 对矩阵 f 进行训练。最后,使用训练好的模型对矩阵 f 进行预测,并使用 CalculateAccuracy 函数计算预测准确率 acc4,即集成分类器的准确率。

相关推荐

import pandas as pd from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA from sklearn.metrics import accuracy_score, classification_report from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC data = load_wine() # 导入数据集 X = pd.DataFrame(data.data, columns=data.feature_names) y = pd.Series(data.target) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 构建分类模型 model = LogisticRegression() model.fit(X_train, y_train) # 预测测试集结果 y_pred = model.predict(X_test) #评估模型性能 accuracy = accuracy_score(y_test, y_pred) report = classification_report(y_test, y_pred) print('准确率:', accuracy) # 特征选择 selector = SelectKBest(f_classif, k=6) X_new = selector.fit_transform(X, y) print('所选特征:', selector.get_support()) # 模型降维 pca = PCA(n_components=2) X_new = pca.fit_transform(X_new) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size=0.2, random_state=0) def Sf(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) importance = mode.feature_importances_ print(importance) def Sf1(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) modelname='支持向量机' Sf1(SVC,X_train, X_test, y_train, y_test,modelname) modelname='逻辑回归' Sf1(LogisticRegression,X_train, X_test, y_train, y_test,modelname) modelname='高斯朴素贝叶斯算法训练分类器' Sf1(GaussianNB,X_train, X_test, y_train, y_test,modelname) modelname='K近邻分类' Sf1(KNeighborsClassifier,X_train, X_test, y_train, y_test,modelname) modelname='决策树分类' Sf(DecisionTreeClassifier,X_train, X_test, y_train, y_test,modelname) modelname='随机森林分类' Sf(RandomForestClassifier,X_train, X_test, y_train, y_test,modelname)加一个画图展示

zip

最新推荐

recommend-type

基于关键词搜索结果的微博爬虫(下载即用).zip

基于关键词搜索结果的微博爬虫(下载即用).zip本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,当然也适合小白学习进阶。如果基础还行,可以在此代码基础上进行修改,以实现其他功能。 基于关键词搜索结果的微博爬虫(下载即用).zip本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,当然也适合小白学习进阶。如果基础还行,可以在此代码基础上进行修改,以实现其他功能。 基于关键词搜索结果的微博爬虫(下载即用).zip本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,当然也适合小白学习进阶。如果基础还行,可以在此代码基础上进行修改,以实现其他功能。 基于关键词搜索结果的微博爬虫(下载即用).zip本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,当然也适合小白学习进阶。如果基础还行,可以在此代码基础上进行修改
recommend-type

node-v4.4.1-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

J波模拟matlab代码.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

Obsidian quickadd插件

Obsidian quickadd插件
recommend-type

Fraunhofer Versatile Video Encoder (VVenC) v0.1

这份文件是关于Fraunhofer Versatile Video Encoder (VVenC) v0.1版本的文档,由Fraunhofer Heinrich Hertz Institute (HHI)的视频编码与分析部门的Jens Brandenburg, Adam Wieckowski, Tobias Hinz, Benjamin Bross撰写
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。