基于pytorch编写狗图片的识别
时间: 2024-01-21 22:03:51 浏览: 72
以下是一个基于PyTorch的狗图片识别的代码示例:
首先,需要导入必要的库和模块:
```
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
```
然后,定义一个卷积神经网络模型:
```
class DogNet(nn.Module):
def __init__(self):
super(DogNet, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(64 * 28 * 28, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = self.conv3(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = x.view(-1, 64 * 28 * 28)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return x
```
接着,定义训练和测试函数:
```
def train(model, train_loader, optimizer, criterion):
model.train()
train_loss = 0.0
for data, target in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item() * data.size(0)
train_loss = train_loss / len(train_loader.dataset)
return train_loss
def test(model, test_loader, criterion):
model.eval()
test_loss = 0.0
correct = 0.0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
loss = criterion(output, target)
test_loss += loss.item() * data.size(0)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss = test_loss / len(test_loader.dataset)
accuracy = 100.0 * correct / len(test_loader.dataset)
return test_loss, accuracy
```
最后,读取训练集和测试集数据,并进行训练和测试:
```
train_set = datasets.ImageFolder('train', transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
test_set = datasets.ImageFolder('test', transform=transforms.ToTensor())
test_loader = torch.utils.data.DataLoader(test_set, batch_size=64, shuffle=True)
model = DogNet()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(10):
train_loss = train(model, train_loader, optimizer, criterion)
test_loss, accuracy = test(model, test_loader, criterion)
print("Epoch: {}, Train Loss: {:.4f}, Test Loss: {:.4f}, Accuracy: {:.2f}%".format(epoch+1, train_loss, test_loss, accuracy))
```
这段代码将训练10个epoch,并输出每个epoch的训练损失、测试损失和准确率。在训练结束后,我们可以使用模型来预测新的狗图片。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)