编写基于pytorch的手写字符识别,使用卷积神经网络GPU加速
时间: 2023-06-14 10:08:35 浏览: 121
通过pytorch搭建卷积神经网络完成手写识别任务,并将训练好的模型以多种方式部署到TensorRT中加速
好的,下面是一个基于PyTorch和GPU加速的手写字符识别模型的代码示例。
首先,我们需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
```
然后,我们可以定义一个包含卷积、池化、全连接层的卷积神经网络模型:
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(1600, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.conv2(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = nn.functional.log_softmax(x, dim=1)
return output
```
接下来,我们可以定义一些超参数和数据处理的方法:
```python
batch_size = 64
epochs = 10
learning_rate = 0.01
momentum = 0.5
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
```
然后,我们可以加载MNIST数据集并创建数据加载器:
```python
train_dataset = datasets.MNIST('../data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('../data', train=False, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
```
接下来,我们可以定义我们的模型、优化器和损失函数:
```python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum)
criterion = nn.NLLLoss()
```
最后,我们可以开始训练我们的模型:
```python
for epoch in range(epochs):
train_loss = 0.0
train_correct = 0
model.train()
for data, target in train_loader:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item() * data.size(0)
_, predicted = torch.max(output.data, 1)
train_correct += (predicted == target).sum().item()
train_loss = train_loss / len(train_loader.dataset)
train_accuracy = train_correct / len(train_loader.dataset)
print('Epoch: {} \tTraining Loss: {:.6f} \tTraining Accuracy: {:.6f}'.format(
epoch+1, train_loss, train_accuracy))
test_loss = 0.0
test_correct = 0
model.eval()
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
loss = criterion(output, target)
test_loss += loss.item() * data.size(0)
_, predicted = torch.max(output.data, 1)
test_correct += (predicted == target).sum().item()
test_loss = test_loss / len(test_loader.dataset)
test_accuracy = test_correct / len(test_loader.dataset)
print('Epoch: {} \tTest Loss: {:.6f} \tTest Accuracy: {:.6f}'.format(
epoch+1, test_loss, test_accuracy))
```
这样,我们就完成了基于PyTorch和GPU加速的手写字符识别模型的编写。
阅读全文