写一段基于pytorch框架的卷积神经网络
时间: 2023-02-24 08:17:48 浏览: 187
在PyTorch框架中,构建卷积神经网络的代码如下:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(in_features=64 * 8 * 8, out_features=512)
self.fc2 = nn.Linear(in_features=512, out_features=10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 64 * 8 * 8)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
```
上面的代码定义了一个简单的卷积神经网络,其中包含两个卷积层,两个全连接层。使用PyTorch的nn模块定义了各个层,并使用forward函数定义了数据的前向传播过程。
阅读全文