std::getline

时间: 2023-06-22 11:46:25 浏览: 61
`std::getline` 是 C++ 中的一个函数,用于从输入流中读取一行字符串并存储到指定的字符串变量中。它的定义如下: ```cpp std::istream& std::getline(std::istream& is, std::string& str, char delim); ``` 其中,`is` 是输入流对象,`str` 是要存储读取到的字符串的变量,`delim` 是分隔符,表示输入流中一行字符串的结束位置,可以是换行符、回车符等任何字符。当读取到分隔符时,`std::getline` 会停止读取,将读取到的字符串存储到 `str` 中,并将分隔符从输入流中去掉。`std::getline` 函数返回输入流对象 `is` 的引用,以便进行链式操作。
相关问题

std::getline(std::cin,line)

`std::getline(std::cin, line)`是C++中的一个函数,用于从标准输入流`std::cin`中读取一行文本,并将其存储在字符串变量`line`中。这个函数可以用来读取用户输入的一行文本。 以下是一个示例代码,演示了如何使用`std::getline(std::cin, line)`函数读取用户输入的一行文本并输出: ```cpp #include <iostream> #include <string> int main() { std::string line; std::getline(std::cin, line); std::cout << line << std::endl; return 0; } ``` 这段代码首先声明了一个字符串变量`line`,然后使用`std::getline(std::cin, line)`函数从标准输入流中读取一行文本,并将其存储在`line`变量中。最后,使用`std::cout`将读取到的文本输出到标准输出流。

不使用 std::getline

如果你不想使用 `std::getline` 函数来读取文件,你可以使用 `std::fstream` 类和 `operator>>` 运算符来逐个字符或逐个单词读取文件内容。 以下是使用 `operator>>` 运算符逐个单词读取文件内容并写入新文件的示例代码: ```c++ #include <iostream> #include <fstream> #include <string> int main() { std::string input_file = "input.txt"; std::string output_file = "output.txt"; // 打开输入文件 std::ifstream fin(input_file); // 检查输入文件是否打开成功 if (!fin.is_open()) { std::cerr << "Failed to open input file: " << input_file << std::endl; return 1; } // 打开输出文件 std::ofstream fout(output_file); // 检查输出文件是否打开成功 if (!fout.is_open()) { std::cerr << "Failed to open output file: " << output_file << std::endl; return 1; } // 逐个单词读取输入文件并写入输出文件 std::string word; while (fin >> word) { fout << word << " "; } // 关闭文件流 fin.close(); fout.close(); std::cout << "File copied successfully!" << std::endl; return 0; } ``` 在这个示例程序中,我们使用 `std::ifstream` 和 `std::ofstream` 类打开输入文件和输出文件。然后,我们使用 `operator>>` 运算符逐个单词读取输入文件中的内容,并将读取到的单词写入输出文件。最后,我们关闭文件流并输出成功消息。 注意,这种方法无法处理空格或制表符等空白字符,因为它只会读取输入流中的非空白字符。如果你需要保留空格或制表符,可以将 `fout << word << " ";` 改为 `fout << word << std::endl;`,这样每个单词都会单独一行。

相关推荐

#include <iostream> #include <string> #include <ctime> #include <csignal> #include "Automaton.h" #ifdef _WIN32 #include <windows.h> #else #include <unistd.h> #endif bool isRunning = true; Automaton* automaton; void wait(int ms) { #ifdef _WIN32 Sleep(ms); #else usleep(ms * 1000); #endif } void handleCtrlC(int); int main() { srand(time(NULL)); int lines = -1, columns = -1; std::cout << "Lines?" << std::endl; std::cin >> lines; std::cout << "Columns?" << std::endl; std::cin >> columns; std::cout << "Generate random patterns? [y/N]" << std::endl; std::string yn; std::cin >> yn; automaton = new Automaton(lines, columns); if (yn == "y" || yn == "Y") automaton->init(true); else automaton->init(); std::string s; std::getline(std::cin, s); signal(SIGINT, handleCtrlC);while (true) { if (isRunning) { std::cout << "[RUNNING]" << std::endl; automaton->run(); automaton->display(); } wait(1000); } } void handleCtrlC(int) { isRunning = false; std::cout << "[PAUSED]" << std::endl; while (true) { automaton->display(); std::cout << "Press Enter to continue, S to save, L to load, C to change cell state, R to revert to previous generation, or Q to quit." << std::endl; std::string input; std::getline(std::cin, input); if (input.empty()) { std::cout << "[CONTINUE]" << std::endl; break; } else if (input == "S" || input == "s") { std::cout << "Enter file name: "; std::getline(std::cin, input); automaton->saveToFile(input); } else if (input == "L" || input == "l") { std::cout << "Enter file name: "; std::getline(std::cin, input); automaton->loadFromFile(input); } else if (input == "C" || input == "c") { std::cout << "Enter cell coordinates (x,y): "; std::getline(std::cin, input); int x = std::stoi(input.substr(0, input.find(','))); int y = std::stoi(input.substr(input.find(',') + 1)); automaton->changeCellState(x, y); } else if (input == "R" || input == "r") { automaton->revertToPreviousGeneration(); } else if (input == "Q" || input == "q") { std::cout << "[EXIT]" << std::endl; exit(0); } else { std::cout << "Invalid input." << std::endl; } } isRunning = true; signal(SIGINT, handleCtrlC); } 介绍这段代码思路

#include<iostream> #include<ctime> #include<chrono> #include<string> #include<filesystem> #include<fstream> #include<sstream> #include<thread> #include<boost/filesystem.hpp> const uintmax_t MAX_LOGS_SIZE = 10ull * 1024ull * 1024ull * 1024ull; //const uintmax_t MAX_LOGS_SIZE = 10ull; void create_folder(std::string folder_name) { boost::filesystem::create_directory(folder_name); std::string sub_foldername=folder_name+"/logs_ros"; boost::filesystem::create_directory(sub_foldername); } std::string get_current_time() { auto now = std::chrono::system_clock::now(); std::time_t now_c = std::chrono::system_clock::to_time_t(now); std::tm parts = *std::localtime(&now_c); char buffer[20]; std::strftime(buffer, sizeof(buffer), "%Y-%m-%d-%H-%M", &parts); return buffer; } void check_logs_size() { std::string logs_path = "/home/sage/logs/"; boost::filesystem::path logs_dir(logs_path); std::uintmax_t total_size = 0; for (const auto& file : boost::filesystem::recursive_directory_iterator(logs_dir)) { if (boost::filesystem::is_regular_file(file)) { total_size += boost::filesystem::file_size(file); } } if (total_size > MAX_LOGS_SIZE) { boost::filesystem::path earliest_dir; std::time_t earliest_time = std::time(nullptr); for (const auto& dir : boost::filesystem::directory_iterator(logs_dir)) { if (boost::filesystem::is_directory(dir)) { std::string dir_name = dir.path().filename().string(); std::tm time_parts = {}; std::istringstream ss(dir_name); std::string part; std::getline(ss, part, '-'); time_parts.tm_year = std::stoi(part) - 1900; std::getline(ss, part, '-'); time_parts.tm_mon = std::stoi(part) - 1; std::getline(ss, part, '-'); time_parts.tm_mday = std::stoi(part); std::getline(ss, part, '-'); time_parts.tm_hour = std::stoi(part); std::getline(ss, part, '-'); time_parts.tm_min = std::stoi(part); std::time_t dir_time = std::mktime(&time_parts); if (dir_time < earliest_time) { earliest_time = dir_time; earliest_dir = dir.path(); } } } if (!earliest_dir.empty()) { boost::filesystem::remove_all(earliest_dir); } } } int main() { std::string logs_path = "/home/sage/logs/"; while (true) { std::chrono::system_clock::time_point now = std::chrono::system_clock::now(); std::time_t now_c = std::chrono::system_clock::to_time_t(now); std::tm parts = *std::localtime(&now_c); if (parts.tm_min % 10 == 0) { std::string folder_name = logs_path + get_current_time(); create_folder(folder_name); } check_logs_size(); std::this_thread::sleep_for(std::chrono::minutes(1)); } return 0; }修改为ros节点

最新推荐

recommend-type

####这是一篇对python的详细解析

python
recommend-type

菜日常菜日常菜日常菜日常

菜日常菜日常菜日常菜日常
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。