解释这段代码 std::cout << "P(end with" << EPSILON << "):" << std::endl; std::getline(std::cin, tmp); // eat empty line

时间: 2024-04-27 10:21:34 浏览: 9
这段代码包含了两条语句,它们的作用分别是: 1. `std::cout << "P(end with" << EPSILON << "):" << std::endl;`:这个语句使用标准输出流输出一个文本 `"P(end with"` 和预定义的符号 `EPSILON`,并在末尾添加一个文本 `"):"` 和一个换行符。其中,`EPSILON` 是一个预定义的宏,表示空串(epsilon),在这个文本中用于提示用户输入以空串结尾的产生式。 2. `std::getline(std::cin, tmp);`:这个语句使用标准输入流读取用户输入的一行字符串,并将它存储到变量 `tmp` 中。这行字符串表示以空串结尾的产生式,它应该包含产生式的左部和右部,用于构建文法规则。 需要注意的是,在这个语句执行之前,程序可能已经读取了一个空行,因此这个语句的作用是“吃掉”这个空行,以便后续的输入操作不会因为读取到空行而出错。这个技巧通常在使用 `std::getline` 函数读取多行输入时使用,以保证输入的正确性和完整性。
相关问题

#include<algorithm> #include<iostream> #include<vector> #include<string> #include<cmath> #include <cstdio> #include <map> #include <unordered_map> using namespace std; const int INF = 0x3f3f3f3f; int n, gamma, time_count=0; int time[10]; string alpha; vector<int> Length(50005, 0); unordered_map<string, int> number; unordered_map<int, string> nega_number; vector<unordered_map<int, int>> edge(50005); vector<int> trace(50005, 0); vector<int> final_trace; void finding(string alpha) { int a=number[alpha], b; char beta; string epsilon; for(int i=9; i>=0; i--) { for(int j=1; j<10; j++) { epsilon = alpha; epsilon[i] = '0' + (int(epsilon[i]) + j) % 10; if(number.find(epsilon) != number.end() and epsilon != alpha) { b = number[epsilon]; edge[a][b]= time[i]; } } for(int j=i-1; j>=0; j--) { epsilon = alpha; beta = epsilon[j]; epsilon[j] = epsilon[i]; epsilon[i] = beta; if(number.find(epsilon) != number.end() and epsilon != alpha) { b = number[epsilon]; edge[a][b]= time[j]; } } } } void dijkstra(int i) { int beta; for(auto j : edge[i]) { beta = Length[j.first]; if(beta > Length[i] + j.second) { Length[j.first] = Length[i] + j.second; trace[j.first] = i; if(beta == INF) { dijkstra(j.first); } } } } int main() { cin>>n; for(int i=2; i<n+1;i++) { Length[i] = INF; } for(int i=0; i<10; i++) { cin>>time[i]; } for(int i=0; i<n; i++) { cin>>alpha; nega_number[i] = alpha; number[alpha] = i+1; } for(int i=0; i<n; i++) { alpha = nega_number[i]; finding(alpha); } dijkstra(1); if(Length[n] == INF) { cout<<"-1"; } else { gamma = n; final_trace.push_back(gamma); cout<<Length[n]<<endl; while(gamma != 1) { gamma = trace[gamma]; final_trace.push_back(gamma); } cout<<final_trace.size()<<endl; for(int i=final_trace.size()-1;i>-1;i--) { cout<<final_trace[i]<<" "; } } //system("pause"); return 0; }修改当中的dijkstra

在这份代码中,我们可以发现`dijkstra`函数实现的是单源最短路径算法,其核心思想是不断更新起点到各个顶点之间的最短路径。下面是修改后的`dijkstra`函数代码: ``` void dijkstra(int i) { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; vector<bool> vis(n+1, false); q.push({0, i}); Length[i] = 0; while(!q.empty()) { int u = q.top().second; q.pop(); if(vis[u]) continue; vis[u] = true; for(auto j : edge[u]) { int v = j.first, w = j.second; if(Length[v] > Length[u] + w) { Length[v] = Length[u] + w; trace[v] = u; q.push({Length[v], v}); } } } } ``` 在这份代码中,我们使用了优先队列来维护当前未确定最短路径的顶点,每次取出距离最小的顶点进行松弛操作。我们同时使用了一个vector来记录每个顶点是否已经被确定最短路径,以避免重复遍历。需要注意的是,我们在初始化时将起点的最短路径长度设为0,其余顶点的最短路径长度设为正无穷,这样可以保证起点首先被加入队列。 另外,我们在这段代码中还省略了一些之前的变量声明和输入输出操作,需要根据实际情况进行补充。

优化finding函数,#include<algorithm> #include<iostream> #include<vector> #include<string> #include<cmath> #include <cstdio> #include <map> #include <unordered_map> #include <queue> using namespace std; const int INF = 0x3f3f3f3f; int n, gamma, time_count=0; int time[10]; string alpha; vector<int> Length(50005, 0); unordered_map<string, int> number; unordered_map<int, string> nega_number; vector<unordered_map<int, int>> edge(50005); vector<int> trace(50005, 0); vector<int> final_trace; void finding(string alpha) { int a=number[alpha], b; char beta; string epsilon; for(int i=9; i>=0; i--) { for(int j=1; j<10; j++) { epsilon = alpha; epsilon[i] = '0' + (int(epsilon[i]) + j) % 10; if(number.find(epsilon) != number.end() and epsilon != alpha) { b = number[epsilon]; edge[a][b]= time[i]; } } for(int j=i-1; j>=0; j--) { epsilon = alpha; beta = epsilon[j]; epsilon[j] = epsilon[i]; epsilon[i] = beta; if(number.find(epsilon) != number.end() and epsilon != alpha) { b = number[epsilon]; edge[a][b]= time[j]; } } } } void dijkstra(int i) { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; vector<bool> vis(n+1, false); q.push({0, i}); Length[i] = 0; while(!q.empty()) { int u = q.top().second; q.pop(); if(vis[u]) continue; vis[u] = true; for(auto j : edge[u]) { int v = j.first, w = j.second; if(Length[v] > Length[u] + w) { Length[v] = Length[u] + w; trace[v] = u; q.push({Length[v], v}); } } } } int main() { cin>>n; for(int i=2; i<n+1;i++) { Length[i] = INF; } for(int i=0; i<10; i++) { cin>>time[i]; } for(int i=0; i<n; i++) { cin>>alpha; nega_number[i] = alpha; number[alpha] = i+1; } for(int i=0; i<n; i++) { alpha = nega_number[i]; finding(alpha); } dijkstra(1); if(Length[n] == INF) { cout<<"-1"; } else { gamma = n; final_trace.push_back(gamma); cout<<Length[n]<<endl; while(gamma != 1) { gamma = trace[gamma]; final_trace.push_back(gamma); } cout<<final_trace.size()<<endl; for(int i=final_trace.size()-1;i>-1;i--) { cout<<final_trace[i]<<" "; } } system("pause"); return 0; }

可以对finding函数进行以下优化: 1. 将string类型的alpha改为int类型的a,避免在函数中多次进行string和int类型的转换。 2. 将时间复杂度较高的除法运算改为直接进行取余运算。 优化后的代码如下: ```c++ void finding(int a) { int b; string epsilon; for (int i = 9; i >= 0; i--) { for (int j = 1; j < 10; j++) { epsilon = to_string(a); epsilon[i] = '0' + (epsilon[i] - '0' + j) % 10; if (number.find(epsilon) != number.end() && epsilon != to_string(a)) { b = number[epsilon]; edge[a][b] = time[i]; } } for (int j = i - 1; j >= 0; j--) { epsilon = to_string(a); char beta = epsilon[j]; epsilon[j] = epsilon[i]; epsilon[i] = beta; if (number.find(epsilon) != number.end() && epsilon != to_string(a)) { b = number[epsilon]; edge[a][b] = time[j]; } } } } ``` 另外,建议将system("pause")移除,因为它只在Windows系统上有效,在其他系统上可能会出现问题。可以使用cin.get()或者getchar()代替。

相关推荐

最新推荐

recommend-type

毕业设计基于STC12C5A、SIM800C、GPS的汽车防盗报警系统源码.zip

STC12C5A通过GPS模块获取当前定位信息,如果车辆发生异常震动或车主打来电话(主动请求定位),将通过GSM发送一条定位短信到车主手机,车主点击链接默认打开网页版定位,如果有安装高德地图APP将在APP中打开并展示汽车当前位置 GPS模块可以使用多家的GPS模块,需要注意的是,当前程序对应的是GPS北斗双模芯片,故只解析 GNRMC数据,如果你使用GPS芯片则应改为GPRMC数据即可。 系统在初始化的时候会持续短鸣,每初始化成功一部分后将长鸣一声,如果持续短鸣很久(超过20分钟),建议通过串口助手查看系统输出的调试信息,系统串口默认输出从初始化开始的所有运行状态信息。 不过更建议你使用SIM868模块,集成GPS.GSM.GPRS,使用更加方便
recommend-type

基于tensorflow2.x卷积神经网络字符型验证码识别.zip

基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。
recommend-type

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip
recommend-type

自己编写的python 程序计算cpk/ppk

cpk&ppk python 小程序,品友点评
recommend-type

基于Springboot开发的分布式抽奖系统.zip

基于springboot的java毕业&课程设计
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。