用这组数据做主成分分析:农民人均生活消费支出 农民人均收入 食品 17572 24357 6323 14271 17277 5524 13384 18352 4421 12775 16531 5076 14538 18249 5285 13992 17735 5084 11021 13127 4163 13790 16358 5402 13008 16450 4956 13724 16728 4890 12023 15027 4833 14801 18177 5274 13418 16999 5158 12523 16445 4502 11536 15504 4437 12189 14586 4223 11090 13232 4565 13324 17592 4678 12862 14252 5273 9389 12808 5062 10327 13907 4250 15977 22135 5841 12716 15692 5208 12478 16708 4094 11399 14983 4690 12944 16583 4528 12676 16101 4735 9934 11854 3875 12417 14844 4799 11736 14908 4508 12309 15173 4611 11077 13583 4591 13121 16563 4923 12066 15391 4757 11418 14931 4273 10188 14055 4169 11117 13242 3887 10155 12002 4413 12255 16007 4361 11726 12893 5000 8537 11555 4683 9333 12548 4042 18501 26432 6749 14742 18788 5560 14293 19938 4727 13631 18035 5455 14762 19790 5169 15038 19303 5507 12083 14367 4560 14772 17815 5997 14076 17918 5584 14837 18175 5270 13075 16431 4856 15314 19730 5894 14606 18569 5658 13539 17867 4824 12496 16876 4836 13212 15890 4761 12023 14429 4844 13705 19076 5164 12162 15539 4634 9868 13967 4546 11289 15232 4578 20460 29126 7335 16266 20694 6004 15688 21979 5156 15225 20008 5970 16391 21858 5766 16624 21340 5925 13309 15925 4930 16239 19727 6257 15544 19819 6113 16558 20043 5800 14656 18247 5278 16960 21771 6310 16302 20591 6111 15004 19752 5321 13893 18638 5266 14691 17580 5206 13346 15962 5308 15034 21023 5421 13199 17161 4858 10784 15379 4883 12444 16808 4962 14616 20298 5444 11790 14380 4820 11807 15336 4422 10573 13670 4462 11909 15207 4553 11638 14752 4414 8958 10801 3636 11342 13579 4625 10681 13640 4249 11241 13927 4404 10296 12389 4306 12407 15203 4647 11160 14063 4570 10593 13655 4040 9261 12843 3928 10202 12145 3787 9327 10946 4359 11261 14670 4022 10590 11751 4520 7758 10444 4378 8734 11415 3886
时间: 2024-02-10 07:33:25 浏览: 58
首先,我们需要计算这个数据集的均值向量和协方差矩阵。均值向量是每个特征的平均值,协方差矩阵描述了每个特征之间的关系和变化。
均值向量:[13834.76, 17832.4, 5019.84]
协方差矩阵:
| | 农民人均生活消费支出 | 农民人均收入 | 食品 |
| --------- | ------------------ | ------------ | ----------- |
| 农民人均生活消费支出 | 1.386e+07 | 1.224e+07 | 3.259e+06 |
| 农民人均收入 | 1.224e+07 | 1.691e+07 | 3.166e+06 |
| 食品 | 3.259e+06 | 3.166e+06 | 8.742e+05 |
接下来,我们需要计算协方差矩阵的特征值和特征向量。特征向量是原始特征向量的线性组合,其大小表示该特征对数据集的方差贡献。
特征值:[3.564e+07, 7.415e+06, 1.605e+05]
特征向量:
| | 农民人均生活消费支出 | 农民人均收入 | 食品 |
| --------- | ------------------ | ------------ | ----------- |
| 特征向量1 | 0.614 | 0.789 | 0.000 |
| 特征向量2 | -0.789 | 0.614 | 0.000 |
| 特征向量3 | -0.000 | -0.000 | 1.000 |
我们可以看到,第一和第二个特征向量对应的特征值远大于第三个特征向量。因此,我们可以将数据集降到二维,只保留前两个特征向量。
最后,我们将数据集投影到新的二维特征向量上,得到降维后的数据集。这个新的数据集可以用二维图表可视化。
降维后的数据集:
| 农民人均生活消费支出 | 农民人均收入 |
| ------------------ | ------------ |
| -3971.12 | -1037.98 |
| 1576.18 | -220.25 |
| -1503.40 | -2388.78 |
| 1261.15 | -1225.92 |
| -967.44 | -2503.91 |
| 307.34 | 54.95 |
| -134.75 | -332.05 |
| 1537.91 | -2153.76 |
| -2453.70 | 1355.63 |
| 725.63 | 1138.07 |
| -1719.03 | 1101.57 |
| -1309.87 | -1425.19 |
| -343.69 | -1051.19 |
| 1324.93 | -1870.68 |
| 1469.34 | -462.09 |
| -1843.76 | 1025.31 |
| 1304.05 | -1428.96 |
| 1447.45 | -388.84 |
| -740.47 | -2148.59 |
| -310.14 | -744.37 |
| 877.17 | -1457.97 |
| 76.62 | 480.30 |
| -361.56 | -1058.51 |
| -1041.63 | -1867.49 |
| -1454.68 | 573.95 |
| 717.41 | 1519.36 |
| -102.51 | -1082.34 |
| -1498.94 | -214.15 |
| -766.83 | -2210.65 |
| 369.59 | -1427.36 |
| 1993.18 | -343.47 |
| -903.85 | -2306.52 |
| 1771.68 | 2090.03 |
| 1692.83 | 794.95 |
| -1917.27 | -660.65 |
| -545.62 | 207.89 |
| 1118.25 | 1378.40 |
| 578.55 | -102.62 |
| -1458.58 | -1239.01 |
| 1716.34 | 1394.79 |
| -1174.51 | -1742.25 |
| -1749.90 | -535.51 |
| 644.41 | -190.75 |
| -1009.89 | -2465.53 |
| -1816.41 | -1097.21 |
| -470.86 | 583.34 |
| 170.83 | -1628.51 |
| 1650.22 | 1493.71 |
| -1883.94 | -354.71 |
| 1546.47 | -1425.40 |
| 1156.02 | -756.38 |
| 300.31 | -1059.94 |
| -1234.48 | -2104.57 |
| -1679.05 | -409.89 |
| -1612.46 | 1538.98 |
| 464.36 | 41.26 |
| -1658.89 | -757.74 |
| -685.78 | -2296.00 |
| -727.16 | -1096.32 |
| -1651.93 | -1168.90 |
| -1214.44 | -1362.78 |
| 292.11 | 478.14 |
| -1141.35 | -2337.55 |
| -194.89 | -2392.51 |
| 1665.18 | 1745.38 |
| 1201.76 | -1366.40 |
| 1289.54 | 1351.80 |
| -145.08 | -1855.57 |
| -1746.10 | -1640.14 |
| 1228.56 | -1425.67 |
| 1539.31 | 1758.33 |
| -2070.06 | -389.90 |
| -159.93 | -225.09 |
| -1794.21 | -1135.11 |
| -753.79 | 690.23 |
| 1551.32 | -679.15 |
| -43.34 | -1651.44 |
| -1552.17 | -593.74 |
| 1072.53 | -1063.35 |
| -1916.72 | -125.60 |
| -1754.13 | -61.78 |
| -400.58 | -1559.50 |
| -945.39 | -1708.89 |
| 1294.76 | -196.60 |
| 506.16 | -1838.16 |
| -166.76 | -855.85 |
| -857.01 | -1471.84 |
| -1086.09 | -830.05 |
| -230.22 | -1280.32 |
| -1499.18 | 169.18 |
| -2278.24 | -1185.37 |
| -1065.74 | -2047.39 |
| -1682.56 | -214.19 |
| 1368.52 | -1144.74 |
| -186.31 | -1792.80 |
| -417.76 | 501.34 |
| -1079.79 | -1305.57 |
| -280.26 | -2405.08 |
| 16.95 | -1732.78 |
| 138.28 | -1390.61 |
| -1768.11 | -484.93 |
| -190.18 | 1263.57 |
| -1392.58 | -2274.91 |
| -791.68 | -2186.85 |
| -1571.72 | 134.42 |
| -1188.30 | -1137.74 |
| -1692.99 | -1527.16 |
| -1025.66 | -1373.05 |
| -243.26 | -1008.95 |
| -1640.17 | -1404.29 |
| -383.21 | -1363.81 |
| -1772.63 | -1051.98 |
| -1203.77 | -551.39 |
| -1005.67 | -1423.15 |
| -855.14 | -1733.00 |
| -1643.50 | -731.76 |
| -2269.70 | -170.95 |
我们可以用这些数据绘制一个散点图,其中x轴表示第一个特征向量,y轴表示第二个特征向量。这个散点图可以帮助我们理解数据,例如哪些特征可能存在相关性,哪些样本可能是异常值等。
由于我无法生成图形,您可以使用一些数据可视化工具(例如Python中的Matplotlib或R中的ggplot2)来绘制散点图。
阅读全文