void Nicolas(char store[][comax],char remeber[][comax],int Llen,int Clen) { PtrRt Rt; Queue Q; Rt = CreateRt(0,0,store,Llen,Clen); Q = CreateQueue(); for(int i=0;i<MaxSize;i++) { //初始化邻接矩阵 for(int j=0;j<MaxSize;j++) { arcs[i][j] = inf; } } BFS(Rt,Q,store,expor,Llen,Clen); }

时间: 2024-01-18 10:02:48 浏览: 72
这段代码看起来是在使用 BFS(Breadth First Search)算法对给定的迷宫进行搜索,找到迷宫中的最短路径,并将路径信息存储在邻接矩阵中。 在该算法中,CreateRt 函数用于创建一个根节点,表示迷宫的起点。CreateQueue 函数用于创建一个队列,用于存储待访问的节点。arcs 数组表示邻接矩阵,用于记录节点之间的连通情况和边权值。 BFS 函数则是实现 BFS 算法的主要函数。该函数的参数包括根节点、队列、迷宫地图、explore 数组(用于记录某个节点是否已经被访问过)、迷宫的行数和列数。 在该算法中,首先将根节点加入队列中,并将其标记为已访问。然后,不断从队列中取出节点,遍历其所有相邻的未被访问的节点,并将其加入队列中。在遍历过程中,需要更新当前节点到相邻节点的最短路径长度,并将路径信息存储在邻接矩阵中。 当队列为空时,表示所有可达的节点都已被访问过,此时可以得到起点到终点的最短路径长度和路径信息。 需要注意的是,该代码中使用了一些自定义的函数和数据结构,例如 PtrRt 表示指向根节点的指针,Queue 表示队列类型。此外,还需要了解迷宫地图的存储方式,以及如何将迷宫地图转化为邻接矩阵。
相关问题

#ifndef FUNC_H_INCLUDED #define FUNC_H_INCLUDED #define MaxLNum 110 #define MaxCNum 110 #define MaxSize 10100 #define inf 10000 extern int arcs[MaxSize][MaxSize]; extern int s_nodes[MaxSize]; extern int g_nodes[MaxSize]; extern int dist[MaxSize]; extern int visited[MaxSize]; extern int pre[MaxSize]; extern int s_path[MaxSize][MaxSize]; extern int goal[MaxSize][2]; extern int s_vital[MaxSize][2]; //定义机器人(结构体)。 struct Robot{ int Pos[2]; //当前位置 char CTYPE; //当前的字符类型 struct ArEle{ char CType; int flag; }Around[8]; //周围结点的字符类型及其标记(从North开始,沿顺时针排列) }; typedef struct QNode* Queue; typedef struct Robot* PtrRt; typedef struct Node* PtrToNode; struct Node{ //队列中的结点 PtrRt Rt; PtrToNode Next; }; struct QNode { PtrToNode Front, Rear; // 队列的头、尾指针 }; Queue CreateQueue(); Queue AddQ( Queue Q, PtrRt Rt ); int IsEmpty( Queue Q ); PtrRt DeleteQ( Queue Q ); int** around(int pos[2]); int Judge(char c); void Record(PtrRt Rt,Queue Q,char expor[][MaxCNum]); PtrRt CreateRt(int x,int y,char store[][MaxCNum],int Llen,int Clen); void save_path(PtrRt Rt_1,PtrRt Rt_2,int Clen); PtrRt move(PtrRt Rt,int pos[2],char store[][MaxCNum],int Llen,int Clen); void BFS(PtrRt Rt,Queue Q,char store[][MaxCNum],char expor[][MaxCNum],int Llen,int Clen); void print_path(int path[],int u, int v,int Clen); void dijkstra(int begin,int nodes[],int Llen,int Clen); void Nicolas(char store[][MaxCNum],char expor[][MaxCNum],int Llen,int Clen); #endif // FUNC_H_INCLUDED解释代码

这段代码是一个头文件 func.h,定义了一些宏和函数声明,其中包括: - MaxLNum:最大行数 - MaxCNum:最大列数 - MaxSize:最大节点数 - inf:一个无穷大的数 - arcs:二维数组,表示节点之间的边 - s_nodes:源节点集合 - g_nodes:目标节点集合 - dist:源节点到各个节点的最短距离 - visited:节点是否被访问过 - pre:节点在最短路径中的前驱节点 - s_path:源节点到所有节点的最短路径 - goal:目标节点的坐标 - s_vital:源节点的坐标 还定义了一个机器人的结构体,包括当前位置、字符类型和周围结点的字符类型及其标记。同时还定义了一个队列结构体 QNode 和一个节点结构体 Node,用于 BFS 算法中的队列操作。 在头文件中声明了一些函数: - CreateQueue:创建队列 - AddQ:向队列中添加机器人节点 - IsEmpty:判断队列是否为空 - DeleteQ:从队列中删除机器人节点 - around:获取节点周围的节点 - Judge:判断字符类型 - Record:记录机器人节点信息 - CreateRt:创建机器人节点 - save_path:保存两个节点之间的最短路径 - move:移动机器人 - BFS:广度优先搜索算法 - print_path:打印最短路径 - dijkstra:Dijkstra 算法 - Nicolas:机器人走迷宫算法(主函数)

#include<stdio.h> #include<stdlib.h> #include<string.h> #include"rt.h" int main() { char store[MaxLNum][MaxCNum] = {0}; //建立存储区并初始化 FILE *fp = fopen("map.txt","r"); int Clen; /*行字符个数*/ int Llen = 0; int i,j; if(fp==NULL) { printf("Can't find the file!"); exit(0); } for(i=0;i<MaxLNum;i++) { if(!feof(fp)) { fgets(store[i],MaxLNum,fp); Llen++; } else break; } Llen = Llen; Clen = strlen(store[0])-1; fclose(fp); char expor[MaxLNum][MaxCNum]; for(i=0;i<Llen;i++){ for(j=0;j<Clen;j++) { expor[i][j] = ' '; } } //建立存储区并初始化 Nicolas(store,expor,Llen,Clen); //调用函数使机器人开始探险 FILE *fpw = fopen("record_data.txt","w+"); for(i=0;i<Llen;i++) { for(j=0;j<Clen;j++) { fprintf(fpw,"%c",expor[i][j]); printf("%c",expor[i][j]); } fprintf(fpw,"\n"); printf("\n"); } fclose(fpw); int goal_num = 0,s_num = 0; for(int k=0;k<MaxSize;k++) if(goal[k][0]&&goal[k][1]) goal_num++; for(int k=0;k<MaxSize;k++) if(s_vital[k][0]&&s_vital[k][1]) s_num++; printf("The number of goal points and special points are %d,%d.\n",goal_num,s_num); for(int i=0;i<goal_num;i++) g_nodes[i] = goal[i][0]*Clen+goal[i][1]; for(int i=0;i<s_num;i++) s_nodes[i] = s_vital[i][0]*Clen+s_vital[i][1]; dijkstra(0,g_nodes,Llen,Clen); for(int i=0;i<goal_num;i++){ print_path(pre,0,goal[i][0]*Clen+goal[i][1],Clen); printf("\n"); } return 0; }解释代码

这是一段 C 语言代码,主要是用来读取文件中的地图信息,然后调用一个名为 Nicolas 的函数进行机器人探险,最后将探险结果写入另一个文件中,并计算出地图中的目标点和特殊点的数量。接下来是对代码的具体解释: 1. 头文件:包含标准输入输出库、标准库、字符串库和自定义的 rt.h 头文件。 2. 主函数:主要分为以下几个部分: - 定义一个存储地图信息的二维字符数组 store,并初始化为全 0。 - 打开名为 "map.txt" 的文件,并读取文件中的每一行信息存储到 store 数组中,直到文件结束或存储区已满。 - 定义一个存储探险结果的二维字符数组 expor,并初始化为空格。 - 调用名为 Nicolas 的函数,传入 store、expor、地图行数 Llen 和列数 Clen 进行机器人探险。 - 打开名为 "record_data.txt" 的文件,将探险结果写入文件,并将结果输出到屏幕上。 - 统计地图中的目标点和特殊点的数量,并将其存储到数组 g_nodes 和 s_nodes 中。 - 调用名为 dijkstra 的函数,计算出从起点到每个目标点的最短路径,并将路径信息存储到数组 pre 中。 - 调用名为 print_path 的函数,输出从起点到每个目标点的最短路径。 3. 其他说明: - MaxLNum 和 MaxCNum 是预定义的常量,表示存储区的最大行数和最大列数。 - goal 和 s_vital 是预定义的二维数组,用来存储地图中的目标点和特殊点的坐标。 - MaxSize 是预定义的常量,表示目标点和特殊点的最大数量。 - g_nodes 和 s_nodes 是自定义的一维数组,用来存储目标点和特殊点在地图中的位置。 - pre 是自定义的一维数组,用来存储从起点到目标点的最短路径。 - dijkstra 和 print_path 是自定义的两个函数,用来计算最短路径和输出路径信息。
阅读全文

相关推荐

最新推荐

recommend-type

Deep-Learning-with-PyTorch-by-Eli-Stevens-Luca-Antiga-Thomas-Viehmann

Deep_Learning_with_PyTorch_by_Eli_Stevens_Luca_Antiga_Thomas_Viehmann
recommend-type

直连设备(单片机)端token自动计算(micropython)

直连设备(单片机)端token自动计算(micropython)
recommend-type

Python调试器vardbg:动画可视化算法流程

资源摘要信息:"vardbg是一个专为Python设计的简单调试器和事件探查器,它通过生成程序流程的动画可视化效果,增强了算法学习的直观性和互动性。该工具适用于Python 3.6及以上版本,并且由于使用了f-string特性,它要求用户的Python环境必须是3.6或更高。 vardbg是在2019年Google Code-in竞赛期间为CCExtractor项目开发而创建的,它能够跟踪每个变量及其内容的历史记录,并且还能跟踪容器内的元素(如列表、集合和字典等),以便用户能够深入了解程序的状态变化。" 知识点详细说明: 1. Python调试器(Debugger):调试器是开发过程中用于查找和修复代码错误的工具。 vardbg作为一个Python调试器,它为开发者提供了跟踪代码执行、检查变量状态和控制程序流程的能力。通过运行时监控程序,调试器可以发现程序运行时出现的逻辑错误、语法错误和运行时错误等。 2. 事件探查器(Event Profiler):事件探查器是对程序中的特定事件或操作进行记录和分析的工具。 vardbg作为一个事件探查器,可以监控程序中的关键事件,例如变量值的变化和函数调用等,从而帮助开发者理解和优化代码执行路径。 3. 动画可视化效果:vardbg通过生成程序流程的动画可视化图像,使得算法的执行过程变得生动和直观。这对于学习算法的初学者来说尤其有用,因为可视化手段可以提高他们对算法逻辑的理解,并帮助他们更快地掌握复杂的概念。 4. Python版本兼容性:由于vardbg使用了Python的f-string功能,因此它仅兼容Python 3.6及以上版本。f-string是一种格式化字符串的快捷语法,提供了更清晰和简洁的字符串表达方式。开发者在使用vardbg之前,必须确保他们的Python环境满足版本要求。 5. 项目背景和应用:vardbg是在2019年的Google Code-in竞赛中为CCExtractor项目开发的。Google Code-in是一项面向13到17岁的学生开放的竞赛活动,旨在鼓励他们参与开源项目。CCExtractor是一个用于从DVD、Blu-Ray和视频文件中提取字幕信息的软件。vardbg的开发过程中,该项目不仅为学生提供了一个实际开发经验的机会,也展示了学生对开源软件贡献的可能性。 6. 特定功能介绍: - 跟踪变量历史记录:vardbg能够追踪每个变量在程序执行过程中的历史记录,使得开发者可以查看变量值的任何历史状态,帮助诊断问题所在。 - 容器元素跟踪:vardbg支持跟踪容器类型对象内部元素的变化,包括列表、集合和字典等数据结构。这有助于开发者理解数据结构在算法执行过程中的具体变化情况。 通过上述知识点的详细介绍,可以了解到vardbg作为一个针对Python的调试和探查工具,在提供程序流程动画可视化效果的同时,还通过跟踪变量和容器元素等功能,为Python学习者和开发者提供了强大的支持。它不仅提高了学习算法的效率,也为处理和优化代码提供了强大的辅助功能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命

![【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命](https://docs.plesk.com/en-US/onyx/administrator-guide/images/78798.webp) # 摘要 本文全面探讨了IT设备维保管理的各个方面,从理论基础到实践案例,再到技术革新和未来展望。首先概述了维保计划的重要性,强调了其在延长设备生命周期和提升性能稳定性方面的作用。接着,文中详细论述了维保计划的制定原则,包括预防性维护、设备分类及成本效益分析等。通过分析不同行业的实践案例,本文揭示了成功维保计划的关键因素,并提出了效果评估与改进的策略。随后,探讨了性能监
recommend-type

python爬取网页链接,url = “https://koubei.16888.com/57233/0-0-0-0”

在Python中,使用如`requests`库来发送HTTP请求并抓取网页链接是比较常见的做法。以下是如何使用`requests`和BeautifulSoup库(用于解析HTML)来爬取给定URL上的信息: 首先,确保已安装`requests`和`beautifulsoup4`库,如果未安装可以使用以下命令安装: ```bash pip install requests beautifulsoup4 ``` 然后,你可以编写以下Python脚本来爬取指定URL的内容: ```python import requests from bs4 import BeautifulSoup # 定义要
recommend-type

掌握Web开发:Udacity天气日记项目解析

资源摘要信息: "Udacity-Weather-Journal:Web开发路线的Udacity纳米度-项目2" 知识点: 1. Udacity:Udacity是一个提供在线课程和纳米学位项目的教育平台,涉及IT、数据科学、人工智能、机器学习等众多领域。纳米学位是Udacity提供的一种专业课程认证,通过一系列课程的学习和实践项目,帮助学习者掌握专业技能,并提供就业支持。 2. Web开发路线:Web开发是构建网页和网站的应用程序的过程。学习Web开发通常包括前端开发(涉及HTML、CSS、JavaScript等技术)和后端开发(可能涉及各种服务器端语言和数据库技术)的学习。Web开发路线指的是在学习过程中所遵循的路径和进度安排。 3. 纳米度项目2:在Udacity提供的学习路径中,纳米学位项目通常是实践导向的任务,让学生能够在真实世界的情境中应用所学的知识。这些项目往往需要学生完成一系列具体任务,如开发一个网站、创建一个应用程序等,以此来展示他们所掌握的技能和知识。 4. Udacity-Weather-Journal项目:这个项目听起来是关于创建一个天气日记的Web应用程序。在完成这个项目时,学习者可能需要运用他们关于Web开发的知识,包括前端设计(使用HTML、CSS、Bootstrap等框架设计用户界面),使用JavaScript进行用户交互处理,以及可能的后端开发(如果需要保存用户数据,可能会使用数据库技术如SQLite、MySQL或MongoDB)。 5. 压缩包子文件:这里提到的“压缩包子文件”可能是一个笔误或误解,它可能实际上是指“压缩包文件”(Zip archive)。在文件名称列表中的“Udacity-Weather-journal-master”可能意味着该项目的所有相关文件都被压缩在一个名为“Udacity-Weather-journal-master.zip”的压缩文件中,这通常用于将项目文件归档和传输。 6. 文件名称列表:文件名称列表提供了项目文件的结构概览,它可能包含HTML、CSS、JavaScript文件以及可能的服务器端文件(如Python、Node.js文件等),此外还可能包括项目依赖文件(如package.json、requirements.txt等),以及项目文档和说明。 7. 实际项目开发流程:在开发像Udacity-Weather-Journal这样的项目时,学习者可能需要经历需求分析、设计、编码、测试和部署等阶段。在每个阶段,他们需要应用他们所学的理论知识,并解决在项目开发过程中遇到的实际问题。 8. 技术栈:虽然具体的技术栈未在标题和描述中明确提及,但一个典型的Web开发项目可能涉及的技术包括但不限于HTML5、CSS3、JavaScript(可能使用框架如React.js、Angular.js或Vue.js)、Bootstrap、Node.js、Express.js、数据库技术(如上所述),以及版本控制系统如Git。 9. 学习成果展示:完成这样的项目后,学习者将拥有一个可部署的Web应用程序,以及一个展示他们技术能力的项目案例,这些对于未来的求职和职业发展都是有价值的。 10. 知识点整合:在进行Udacity-Weather-Journal项目时,学习者需要将所学的多个知识点融合在一起,包括前端设计、用户体验、后端逻辑处理、数据存储和检索、以及可能的API调用等。 总结来说,Udacity-Weather-Journal项目是Udacity Web开发纳米学位课程中的一个重要实践环节,它要求学习者运用他们所学到的前端和后端开发技能,完成一个具体的Web应用程序项目。通过完成这样的项目,学习者能够将理论知识转化为实践经验,并为他们未来在IT行业的职业发展打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【文献整理高效法】:ENDNOTE软件实用功能及快捷操作揭秘

![【文献整理高效法】:ENDNOTE软件实用功能及快捷操作揭秘](https://europe1.discourse-cdn.com/endnote/optimized/2X/a/a18b63333c637eb5d6fafb609a4eff7bd46df6b0_2_1024x391.jpeg) # 摘要 本文综合探讨了ENDNOTE在文献整理和管理中的作用及其高效操作技巧。首先介绍了文献整理的重要性和ENDNOTE软件的简介,随后深入解析了ENDNOTE的基本功能,包括文献信息的导入与管理、引用和参考文献的生成,以及文献搜索与数据库集成。接着,本文详细阐述了ENDNOTE的高效操作技巧,涵
recommend-type

在使用SQL创建存储过程时,是否可以在定义输入参数时直接为其赋予初始值?

在使用SQL创建存储过程时,通常可以在定义输入参数时为其赋予初始值。这种做法可以使参数具有默认值,当调用存储过程时,如果没有提供该参数的值,则会使用默认值。以下是一个示例: ```sql CREATE PROCEDURE MyProcedure @Param1 INT = 10, @Param2 NVARCHAR(50) = 'DefaultValue' AS BEGIN -- 存储过程的主体 SELECT @Param1 AS Param1, @Param2 AS Param2 END ``` 在这个示例中,`@Param1`和`@Param2`是输入参数