void Nicolas(char store[][comax],char remeber[][comax],int Llen,int Clen) { PtrRt Rt; Queue Q; Rt = CreateRt(0,0,store,Llen,Clen); Q = CreateQueue(); for(int i=0;i<MaxSize;i++) { //初始化邻接矩阵 for(int j=0;j<MaxSize;j++) { arcs[i][j] = inf; } } BFS(Rt,Q,store,expor,Llen,Clen); }
时间: 2024-01-18 18:02:48 浏览: 67
这段代码看起来是在使用 BFS(Breadth First Search)算法对给定的迷宫进行搜索,找到迷宫中的最短路径,并将路径信息存储在邻接矩阵中。
在该算法中,CreateRt 函数用于创建一个根节点,表示迷宫的起点。CreateQueue 函数用于创建一个队列,用于存储待访问的节点。arcs 数组表示邻接矩阵,用于记录节点之间的连通情况和边权值。
BFS 函数则是实现 BFS 算法的主要函数。该函数的参数包括根节点、队列、迷宫地图、explore 数组(用于记录某个节点是否已经被访问过)、迷宫的行数和列数。
在该算法中,首先将根节点加入队列中,并将其标记为已访问。然后,不断从队列中取出节点,遍历其所有相邻的未被访问的节点,并将其加入队列中。在遍历过程中,需要更新当前节点到相邻节点的最短路径长度,并将路径信息存储在邻接矩阵中。
当队列为空时,表示所有可达的节点都已被访问过,此时可以得到起点到终点的最短路径长度和路径信息。
需要注意的是,该代码中使用了一些自定义的函数和数据结构,例如 PtrRt 表示指向根节点的指针,Queue 表示队列类型。此外,还需要了解迷宫地图的存储方式,以及如何将迷宫地图转化为邻接矩阵。
相关问题
#ifndef FUNC_H_INCLUDED #define FUNC_H_INCLUDED #define MaxLNum 110 #define MaxCNum 110 #define MaxSize 10100 #define inf 10000 extern int arcs[MaxSize][MaxSize]; extern int s_nodes[MaxSize]; extern int g_nodes[MaxSize]; extern int dist[MaxSize]; extern int visited[MaxSize]; extern int pre[MaxSize]; extern int s_path[MaxSize][MaxSize]; extern int goal[MaxSize][2]; extern int s_vital[MaxSize][2]; //定义机器人(结构体)。 struct Robot{ int Pos[2]; //当前位置 char CTYPE; //当前的字符类型 struct ArEle{ char CType; int flag; }Around[8]; //周围结点的字符类型及其标记(从North开始,沿顺时针排列) }; typedef struct QNode* Queue; typedef struct Robot* PtrRt; typedef struct Node* PtrToNode; struct Node{ //队列中的结点 PtrRt Rt; PtrToNode Next; }; struct QNode { PtrToNode Front, Rear; // 队列的头、尾指针 }; Queue CreateQueue(); Queue AddQ( Queue Q, PtrRt Rt ); int IsEmpty( Queue Q ); PtrRt DeleteQ( Queue Q ); int** around(int pos[2]); int Judge(char c); void Record(PtrRt Rt,Queue Q,char expor[][MaxCNum]); PtrRt CreateRt(int x,int y,char store[][MaxCNum],int Llen,int Clen); void save_path(PtrRt Rt_1,PtrRt Rt_2,int Clen); PtrRt move(PtrRt Rt,int pos[2],char store[][MaxCNum],int Llen,int Clen); void BFS(PtrRt Rt,Queue Q,char store[][MaxCNum],char expor[][MaxCNum],int Llen,int Clen); void print_path(int path[],int u, int v,int Clen); void dijkstra(int begin,int nodes[],int Llen,int Clen); void Nicolas(char store[][MaxCNum],char expor[][MaxCNum],int Llen,int Clen); #endif // FUNC_H_INCLUDED解释代码
这段代码是一个头文件 func.h,定义了一些宏和函数声明,其中包括:
- MaxLNum:最大行数
- MaxCNum:最大列数
- MaxSize:最大节点数
- inf:一个无穷大的数
- arcs:二维数组,表示节点之间的边
- s_nodes:源节点集合
- g_nodes:目标节点集合
- dist:源节点到各个节点的最短距离
- visited:节点是否被访问过
- pre:节点在最短路径中的前驱节点
- s_path:源节点到所有节点的最短路径
- goal:目标节点的坐标
- s_vital:源节点的坐标
还定义了一个机器人的结构体,包括当前位置、字符类型和周围结点的字符类型及其标记。同时还定义了一个队列结构体 QNode 和一个节点结构体 Node,用于 BFS 算法中的队列操作。
在头文件中声明了一些函数:
- CreateQueue:创建队列
- AddQ:向队列中添加机器人节点
- IsEmpty:判断队列是否为空
- DeleteQ:从队列中删除机器人节点
- around:获取节点周围的节点
- Judge:判断字符类型
- Record:记录机器人节点信息
- CreateRt:创建机器人节点
- save_path:保存两个节点之间的最短路径
- move:移动机器人
- BFS:广度优先搜索算法
- print_path:打印最短路径
- dijkstra:Dijkstra 算法
- Nicolas:机器人走迷宫算法(主函数)
#include<stdio.h> #include<stdlib.h> #include<string.h> #include"rt.h" int main() { char store[MaxLNum][MaxCNum] = {0}; //建立存储区并初始化 FILE *fp = fopen("map.txt","r"); int Clen; /*行字符个数*/ int Llen = 0; int i,j; if(fp==NULL) { printf("Can't find the file!"); exit(0); } for(i=0;i<MaxLNum;i++) { if(!feof(fp)) { fgets(store[i],MaxLNum,fp); Llen++; } else break; } Llen = Llen; Clen = strlen(store[0])-1; fclose(fp); char expor[MaxLNum][MaxCNum]; for(i=0;i<Llen;i++){ for(j=0;j<Clen;j++) { expor[i][j] = ' '; } } //建立存储区并初始化 Nicolas(store,expor,Llen,Clen); //调用函数使机器人开始探险 FILE *fpw = fopen("record_data.txt","w+"); for(i=0;i<Llen;i++) { for(j=0;j<Clen;j++) { fprintf(fpw,"%c",expor[i][j]); printf("%c",expor[i][j]); } fprintf(fpw,"\n"); printf("\n"); } fclose(fpw); int goal_num = 0,s_num = 0; for(int k=0;k<MaxSize;k++) if(goal[k][0]&&goal[k][1]) goal_num++; for(int k=0;k<MaxSize;k++) if(s_vital[k][0]&&s_vital[k][1]) s_num++; printf("The number of goal points and special points are %d,%d.\n",goal_num,s_num); for(int i=0;i<goal_num;i++) g_nodes[i] = goal[i][0]*Clen+goal[i][1]; for(int i=0;i<s_num;i++) s_nodes[i] = s_vital[i][0]*Clen+s_vital[i][1]; dijkstra(0,g_nodes,Llen,Clen); for(int i=0;i<goal_num;i++){ print_path(pre,0,goal[i][0]*Clen+goal[i][1],Clen); printf("\n"); } return 0; }解释代码
这是一段 C 语言代码,主要是用来读取文件中的地图信息,然后调用一个名为 Nicolas 的函数进行机器人探险,最后将探险结果写入另一个文件中,并计算出地图中的目标点和特殊点的数量。接下来是对代码的具体解释:
1. 头文件:包含标准输入输出库、标准库、字符串库和自定义的 rt.h 头文件。
2. 主函数:主要分为以下几个部分:
- 定义一个存储地图信息的二维字符数组 store,并初始化为全 0。
- 打开名为 "map.txt" 的文件,并读取文件中的每一行信息存储到 store 数组中,直到文件结束或存储区已满。
- 定义一个存储探险结果的二维字符数组 expor,并初始化为空格。
- 调用名为 Nicolas 的函数,传入 store、expor、地图行数 Llen 和列数 Clen 进行机器人探险。
- 打开名为 "record_data.txt" 的文件,将探险结果写入文件,并将结果输出到屏幕上。
- 统计地图中的目标点和特殊点的数量,并将其存储到数组 g_nodes 和 s_nodes 中。
- 调用名为 dijkstra 的函数,计算出从起点到每个目标点的最短路径,并将路径信息存储到数组 pre 中。
- 调用名为 print_path 的函数,输出从起点到每个目标点的最短路径。
3. 其他说明:
- MaxLNum 和 MaxCNum 是预定义的常量,表示存储区的最大行数和最大列数。
- goal 和 s_vital 是预定义的二维数组,用来存储地图中的目标点和特殊点的坐标。
- MaxSize 是预定义的常量,表示目标点和特殊点的最大数量。
- g_nodes 和 s_nodes 是自定义的一维数组,用来存储目标点和特殊点在地图中的位置。
- pre 是自定义的一维数组,用来存储从起点到目标点的最短路径。
- dijkstra 和 print_path 是自定义的两个函数,用来计算最短路径和输出路径信息。
阅读全文