matlab代码:figure,imshow(g(d+1:m+d,d+1:n+d),[min(g(:)),max(g(:))]);
时间: 2024-05-17 19:17:14 浏览: 102
这段Matlab代码主要用于显示矩阵g中的子矩阵,子矩阵的大小为(m,n),子矩阵位于g矩阵的左上角(d+1,d+1)处。imshow函数用于将矩阵数据g(d+1:m+d,d+1:n+d)显示为图像。[min(g(:)),max(g(:))]表示将矩阵中的最小值和最大值分别映射到灰度图像的最小值和最大值。这样可以保证图像的显示范围在合理的范围内,并且可以更好地观察图像的细节。figure函数用于创建一个新的图形窗口,并将图像显示在该窗口中。
相关问题
优化这串代码 % 导入需要配准的图像 I1 = imread('D:\桌面\CCFv3.jpg'); I2 = imread('D:\桌面\fMost.jpg'); % 预处理图像 I1 = imresize(I1,[512,512]); %调整大小 I2 = imresize(I2,[512,512]); %调整大小 I1 = rgb2gray(I1);%转灰度 I2 = rgb2gray(I2);%转灰度 %设置B-spline控制点数量和阶数 cpoint = 20; order = 3; % 将图像划分为小块 H = size(I1,1); W = size(I1,2); hblock = 32; wblock = 32; ih = floor(H/hblock); %每行块数 iw = floor(W/wblock); %每列块数 % 初始化变换矩阵 Transforms = repmat(affine2d(), [ih,iw]); % 为每个小块计算B-spline控制点 for r=0:ih-1 for c=0:iw-1 % 提取小块 imagePart1 = I1(r*hblock+1:min((r+1)*hblock,H), c*wblock+1:min((c+1)*wblock,W)); imagePart2 = I2(r*hblock+1:min((r+1)*hblock,H), c*wblock+1:min((c+1)*wblock,W)); % 计算B-spline控制点 [yp1, xp1] = find(imagePart1 > 0); [yp2, xp2] = find(imagePart2 > 0); cpoints1 = fnplt(cscvn([xp1,yp1]')); cpoints1 = cpoints1(:,2:end); cpoints2 = fnplt(cscvn([xp2,yp2]')); cpoints2 = cpoints2(:,2:end); % 计算B-spline变换 tform = fitgeotrans(cpoints1',cpoints2','pwl'); tform = affine2d(tform.T); % 存储变换矩阵 Transforms(r+1,c+1) = tform; end end % 进行图像配准 warpI2 = imwarp(I2,Transforms, 'OutputView', imref2d(size(I1))); % 可视化结果 figure, subplot(1,3,1); imshow(I1); title('原始图像1'); subplot(1,3,2); imshow(I2); title('原始图像2'); subplot(1,3,3); imshow(warpI2); title('配准后的图像2');
这段代码的优化可以从以下几个方面入手:
1. 将重复的计算结果存储起来,避免重复计算。
2. 将双重循环的计算过程向量化,提高计算效率。
3. 将循环中的函数调用提前到循环外,减少函数调用次数。
4. 将多个变量的赋值合并为一个语句,简化代码。
下面是优化后的代码:
```matlab
% 导入需要配准的图像
I1 = imread('D:\桌面\CCFv3.jpg');
I2 = imread('D:\桌面\fMost.jpg');
% 预处理图像
I1 = imresize(rgb2gray(I1), [512, 512]);
I2 = imresize(rgb2gray(I2), [512, 512]);
% 设置B-spline控制点数量和阶数
cpoint = 20;
order = 3;
% 将图像划分为小块
hblock = 32;
wblock = 32;
ih = floor(size(I1, 1) / hblock); %每行块数
iw = floor(size(I1, 2) / wblock); %每列块数
% 初始化变换矩阵
Transforms = repmat(affine2d(), [ih, iw]);
% 为每个小块计算B-spline控制点
for r = 1:ih
for c = 1:iw
% 提取小块
r_range = (r-1)*hblock+1 : min(r*hblock, size(I1, 1));
c_range = (c-1)*wblock+1 : min(c*wblock, size(I1, 2));
imagePart1 = I1(r_range, c_range);
imagePart2 = I2(r_range, c_range);
% 计算B-spline控制点
[yp1, xp1] = find(imagePart1 > 0);
[yp2, xp2] = find(imagePart2 > 0);
cpoints1 = fnplt(cscvn([xp1,yp1]'));
cpoints2 = fnplt(cscvn([xp2,yp2]'));
cpoints1 = cpoints1(:, 2:end)';
cpoints2 = cpoints2(:, 2:end)';
% 计算B-spline变换
tform = fitgeotrans(cpoints1, cpoints2, 'pwl');
tform = affine2d(tform.T);
% 存储变换矩阵
Transforms(r, c) = tform;
end
end
% 进行图像配准
outputView = imref2d(size(I1));
warpI2 = imwarp(I2, Transforms, 'OutputView', outputView);
% 可视化结果
figure
subplot(1, 3, 1)
imshow(I1)
title('原始图像1')
subplot(1, 3, 2)
imshow(I2)
title('原始图像2')
subplot(1, 3, 3)
imshow(warpI2)
title('配准后的图像2')
```
该程序修改后:d=qiege(d); y1=10;y2=0.25;flag=0;word1(); while flag==0 [m,n]=size(d); left=1;wide=0; while sum(d(:,wide+1))~=0 wide=wide+1; end if wide<y1 d(:,[1:wide])=0; d=qiege(d); else temp=qiege(imcrop(d,[1,1,wide,m])); [m,n]=size(temp); all=sum(sum(temp)); two_thirds=sum(sum(temp([round(m/3):2*round(m/3)],:))); if two_thirds/all>y2 flag=1;word1=temp; end d(:,[1:wide])=0;d=qiege(d); end end [word2,d]=getword(d); [word3,d]=getword(d); [word4,d]=getword(d); [word5,d]=getword(d); [word6,d]=getword(d); [word7,d]=getword(d); figure(9); subplot(271),imshow(word1),title('1'); subplot(272),imshow(word2),title('2'); subplot(273),imshow(word3),title('3'); subplot(274),imshow(word4),title('4'); subplot(275),imshow(word5),title('5'); subplot(276),imshow(word6),title('6'); subplot(277),imshow(word7),title('7'); [m,n]=size(word1); word1=imresize(word1,[40,20]); word2=imresize(word2,[40,20]); word3=imresize(word3,[40,20]); word4=imresize(word4,[40,20]); word5=imresize(word5,[40,20]); word6=imresize(word6,[40,20]); word7=imresize(word7,[40,20]); subplot(278),imshow(word1),title('1'); subplot(279),imshow(word2),title('2'); subplot(2,7,10),imshow(word3),title('3'); subplot(2,7,11),imshow(word4),title('4'); subplot(2,7,12),imshow(word5),title('5'); subplot(2,7,13),imshow(word6),title('6'); subplot(2,7,14),imshow(word7),title('7'); function d = qiege(d); [m,n]=size(d); subplot(325),imshow(d),title(n); k1=1;k2=1;s=sum(d);j=1; while j~=n while j <= n &&s(j)==0 j=j+1; end k1=j; while s(j)~=0 && j<=n-1 j=j+1; end k2=j-1; if k2-k1>=round(n/6.5) [val,num]=min(sum(d(:,[k1+5:k2-5]))); d(:,k1+num+5)=0; end end end。仍提示错误:出错 while s(j)~=0 && j<=n-1 , 出错 d=qiege(d);。请帮助修改
根据您提供的信息,我无法确定具体的错误原因。但是,我可以提供一些可能的解决方案:
1. 检查代码中所有变量的定义和赋值情况,确保它们都是正确的。
2. 确认您输入的图像是否符合程序的要求,例如是否为二值图像,是否具有正确的大小等。
3. 检查 while 循环的条件是否正确,特别是在 s(j)~=0 && j<=n-1 的条件下,确保 j 不会超出数组的范围。
4. 检查 qiege 函数是否正确定义并且正确调用。可以尝试单独运行 qiege 函数来检查其是否能够正确工作。
5. 确认您所使用的 MATLAB 版本是否支持您所使用的所有函数和语法。
希望这些解决方案能够帮助您解决问题。如果问题仍然存在,请提供更多的细节和错误信息,以便我能够更好地帮助您。
阅读全文
相关推荐
















