基于蚁群算法路径规划matlab代码
时间: 2023-06-30 17:06:45 浏览: 169
以下是一个基于蚁群算法的路径规划MATLAB代码示例:
```matlab
% 初始化参数
num_ants = 10; % 蚂蚁数量
num_cities = 20; % 城市数量
alpha = 1; % 表示信息素重要程度的参数
beta = 5; % 表示距离重要程度的参数
rho = 0.1; % 信息素挥发率
Q = 100; % 信息素常量
num_iters = 100; % 迭代次数
% 生成随机的城市坐标
cities = 100 * rand(num_cities, 2);
% 计算城市之间的距离
distances = pdist2(cities, cities);
% 初始化信息素矩阵
pheromones = ones(num_cities, num_cities);
% 开始迭代
for iter = 1:num_iters
% 记录每只蚂蚁的走过的路径和距离
paths = zeros(num_ants, num_cities);
distances_travelled = zeros(num_ants, 1);
% 每只蚂蚁开始走
for ant = 1:num_ants
% 随机选择一个起点城市
current_city = randi(num_cities);
path = current_city;
% 蚂蚁依照信息素和距离的权重选择下一个城市
for i = 1:num_cities-1
unvisited_cities = setdiff(1:num_cities, path);
probabilities = pheromones(current_city, unvisited_cities).^alpha .* (1./distances(current_city, unvisited_cities)).^beta;
probabilities = probabilities / sum(probabilities);
next_city = randsample(unvisited_cities, 1, true, probabilities);
path = [path, next_city];
current_city = next_city;
end
% 计算蚂蚁走过的路径和距离
paths(ant,:) = path;
distances_travelled(ant) = sum(distances(sub2ind([num_cities,num_cities], path(1:end-1), path(2:end))));
end
% 更新信息素矩阵
pheromones = (1-rho) * pheromones;
for ant = 1:num_ants
for i = 1:num_cities-1
pheromones(paths(ant,i), paths(ant,i+1)) = pheromones(paths(ant,i), paths(ant,i+1)) + Q/distances_travelled(ant);
end
end
% 找到最短路径和长度
[shortest_path_length, shortest_path_index] = min(distances_travelled);
shortest_path = paths(shortest_path_index,:);
% 绘制图像
clf;
hold on;
plot(cities(:,1), cities(:,2), 'r.', 'MarkerSize', 20);
plot(cities(shortest_path,1), cities(shortest_path,2), 'k', 'LineWidth', 2);
title(sprintf('Iteration %d: shortest path length = %f', iter, shortest_path_length));
drawnow;
end
```
这段代码实现了一个简单的蚁群算法来进行城市路径规划。它随机生成一些城市坐标,计算城市之间的距离,初始化信息素矩阵,然后开始迭代。每个迭代中,它会让每只蚂蚁按照一定的规则走一遍路径,并记录它们的路径和长度。然后,它会使用这些信息更新信息素矩阵。最后,它会找到最短的一条路径,并画出城市和路径的图像。
需要注意的是,这只是一个简单示例,实际使用时可能需要根据具体问题进行一些修改。
阅读全文