蚁群算法优化路径matlab代码
时间: 2023-09-25 13:06:54 浏览: 111
这是一个基于蚁群算法的TSP(旅行商问题)路径优化的MATLAB代码示例:
```matlab
% TSP 问题优化
% 蚁群算法
% 作者:https://www.matlabcn.com/
%% 预处理
clc; clear ; close all;
rng(1); %控制随机数种子,使每次随机结果一致
n_ants = 50; % 蚂蚁数量
n_iter = 100; % 迭代次数
alpha = 1; % 信息素重要程度因子
beta = 5; % 启发函数重要程度因子
Q = 1;
rho = 0.5; % 信息素挥发因子
n_cities = 20; % 城市数量
% 城市坐标
cities = 100 * rand(n_cities,2);
% 距离矩阵
distances = zeros(n_cities,n_cities);
for i = 1:n_cities
for j = 1:n_cities
distances(i,j) = norm(cities(i,:) - cities(j,:));
end
end
% 初始化信息素矩阵
pheromones = ones(n_cities,n_cities);
%% 蚁群算法优化路径
% 记录迭代过程中的最佳路径
best_path = [];
best_distance = Inf;
for iter = 1:n_iter
% 初始化蚂蚁位置和路径
ant_pos = ceil(rand(1,n_ants) * n_cities);
ant_paths = zeros(n_ants,n_cities);
ant_distances = Inf(1,n_ants);
% 蚂蚁移动
for step = 1:n_cities-1
% 计算每只蚂蚁的下一步城市概率
next_cities_prob = zeros(n_ants,n_cities);
for ant = 1:n_ants
cur_city = ant_pos(ant);
unvisited_cities = setdiff(1:n_cities, ant_paths(ant,1:step-1));
if isempty(unvisited_cities)
continue;
end
pheromone = pheromones(cur_city,unvisited_cities);
distance = distances(cur_city,unvisited_cities);
next_cities_prob(ant,unvisited_cities) = (pheromone .^ alpha) .* (1./distance .^ beta);
next_cities_prob(ant,:) = next_cities_prob(ant,:) / sum(next_cities_prob(ant,:));
end
% 选择下一步城市
next_city = zeros(1,n_ants);
for ant = 1:n_ants
next_city(ant) = roulette_wheel_selection(next_cities_prob(ant,:));
end
% 更新路径和距离
for ant = 1:n_ants
ant_pos(ant) = next_city(ant);
ant_paths(ant,step+1) = next_city(ant);
ant_distances(ant) = ant_distances(ant) + distances(cur_city,next_city(ant));
end
end
% 计算迭代过程中的最佳路径
[min_distance,min_idx] = min(ant_distances);
if min_distance < best_distance
best_distance = min_distance;
best_path = ant_paths(min_idx,:);
end
% 更新信息素矩阵
delta_pheromones = zeros(n_cities,n_cities);
for ant = 1:n_ants
for i = 1:n_cities-1
j = i + 1;
delta_pheromones(ant_paths(ant,i),ant_paths(ant,j)) = delta_pheromones(ant_paths(ant,i),ant_paths(ant,j)) + Q / ant_distances(ant);
end
delta_pheromones(ant_paths(ant,end),ant_paths(ant,1)) = delta_pheromones(ant_paths(ant,end),ant_paths(ant,1)) + Q / ant_distances(ant);
end
pheromones = (1-rho) .* pheromones + delta_pheromones;
end
%% 结果显示
figure;
plot(cities(best_path,1),cities(best_path,2),'-o');
title(sprintf('Total Distance: %.2f',best_distance));
xlabel('x');
ylabel('y');
function idx = roulette_wheel_selection(prob)
% 轮盘赌选择
csum = cumsum(prob);
idx = find(rand <= csum,1,'first');
end
```
上述代码中,首先定义了蚂蚁数量、迭代次数、信息素和启发函数的重要程度因子、信息素挥发因子、城市数量等参数,并生成了随机的城市坐标和距离矩阵。然后初始化了信息素矩阵和记录迭代过程中的最佳路径的变量。
在优化路径的过程中,首先初始化蚂蚁位置和路径,然后进行蚂蚁移动。在每一步中,根据当前蚂蚁的位置和已经访问过的城市,计算出每个未访问城市成为下一步城市的概率,并用轮盘赌法选择下一步城市。然后更新路径和距离。在迭代过程中,记录迭代过程中的最佳路径,同时更新信息素矩阵。具体来说,计算出每只蚂蚁访问过的路径对信息素矩阵的贡献,然后加到信息素矩阵中,同时考虑信息素挥发因子挥发信息素。
最后,将最佳路径显示在图形界面中。
阅读全文