用C++实现:给定n个节点的数值,构造哈夫曼树,输出其节点权值之和

时间: 2024-05-07 12:17:33 浏览: 11
好的,我来回答你的问题。构造哈夫曼树的基本思路是将所有节点按照权值从小到大排序,并将最小的两个节点合并成一个新的父节点,并将它们的权值之和作为新节点的权值。重复这个过程直到只剩下一个节点为止,这个节点即为哈夫曼树的根节点。 以下是用 C 语言实现构造哈夫曼树并输出节点权值之和的示例代码: ``` #include <stdio.h> #include <stdlib.h> // 定义哈夫曼树节点结构体 typedef struct node { int val; // 节点权值 struct node *left, *right; // 左右子节点指针 } node; // 定义最小堆节点结构体 typedef struct minheapnode { node *huffnode; // 对应哈夫曼树的节点指针 struct minheapnode *left, *right; // 左右子节点指针 } minheapnode; // 定义最小堆结构体 typedef struct minheap { int size; // 最小堆大小 minheapnode **arr; // 最小堆节点指针数组 } minheap; // 创建新节点 node* new_node(int val) { node *newnode = (node*) malloc(sizeof(node)); newnode->val = val; newnode->left = NULL; newnode->right = NULL; return newnode; } // 创建新最小堆节点 minheapnode* new_minheapnode(node *huffnode) { minheapnode *newminheapnode = (minheapnode*) malloc(sizeof(minheapnode)); newminheapnode->huffnode = huffnode; newminheapnode->left = NULL; newminheapnode->right = NULL; return newminheapnode; } // 交换两个最小堆节点指针 void swap_minheapnode_ptr(minheapnode **a, minheapnode **b) { minheapnode *temp = *a; *a = *b; *b = temp; } // 最小堆的从下往上调整过程 void minheapify_up(minheap *mh, int idx) { int parent = (idx - 1) / 2; if (idx > 0 && mh->arr[parent]->huffnode->val > mh->arr[idx]->huffnode->val) { swap_minheapnode_ptr(&mh->arr[parent], &mh->arr[idx]); minheapify_up(mh, parent); } } // 最小堆的从上往下调整过程 void minheapify_down(minheap *mh, int idx) { int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left < mh->size && mh->arr[left]->huffnode->val < mh->arr[smallest]->huffnode->val) { smallest = left; } if (right < mh->size && mh->arr[right]->huffnode->val < mh->arr[smallest]->huffnode->val) { smallest = right; } if (smallest != idx) { swap_minheapnode_ptr(&mh->arr[smallest], &mh->arr[idx]); minheapify_down(mh, smallest); } } // 将一个最小堆节点插入到最小堆中 void insert_minheapnode(minheap *mh, minheapnode *mhn) { mh->size++; int i = mh->size - 1; while (i > 0 && mh->arr[(i - 1) / 2]->huffnode->val > mhn->huffnode->val) { mh->arr[i] = mh->arr[(i - 1) / 2]; i = (i - 1) / 2; } mh->arr[i] = mhn; } // 从最小堆中取出最小的节点指针 minheapnode* extract_min(minheap *mh) { if (mh->size <= 0) { return NULL; } if (mh->size == 1) { mh->size--; return mh->arr[0]; } minheapnode *root = mh->arr[0]; mh->arr[0] = mh->arr[mh->size - 1]; mh->size--; minheapify_down(mh, 0); return root; } // 判断一个最小堆是否只剩下一个节点 int is_minheap_single_node(minheap *mh) { return mh->size == 1; } // 构造哈夫曼树 node* build_huffman_tree(int *arr, int n) { // 将所有节点包装成最小堆节点并插入最小堆中 minheap *mh = (minheap*) malloc(sizeof(minheap)); mh->size = 0; mh->arr = (minheapnode**) malloc(n * sizeof(minheapnode*)); for (int i = 0; i < n; i++) { mh->arr[i] = new_minheapnode(new_node(arr[i])); mh->size++; } // 不断从最小堆中取出最小的两个节点并合并成新节点,直到只剩下一个节点 while (!is_minheap_single_node(mh)) { minheapnode *left = extract_min(mh); minheapnode *right = extract_min(mh); minheapnode *parent = new_minheapnode(new_node(left->huffnode->val + right->huffnode->val)); parent->left = left; parent->right = right; insert_minheapnode(mh, parent); } // 最后剩下的节点即为哈夫曼树的根节点 node *huffroot = mh->arr[0]->huffnode; free(mh->arr); free(mh); return huffroot; } // 计算哈夫曼树节点权值之和 int calc_huffman_weight(node *root) { if (root == NULL) { return 0; } return root->val + calc_huffman_weight(root->left) + calc_huffman_weight(root->right); } int main() { int n = 5; int arr[] = {1, 3, 4, 5, 7}; node *root = build_huffman_tree(arr, n); int weight = calc_huffman_weight(root); printf("The sum of node values in the Huffman tree is %d\n", weight); return 0; } ``` 希望这个代码对你有帮助!如果你有其他问题,可以随时问我。

相关推荐

最新推荐

recommend-type

分布式锁与信号量:同步机制的探讨与实践.pdf

在分布式系统中,同步机制是确保多个进程或线程协调工作、避免数据竞争和死锁等问题的关键技术。分布式锁和信号量作为两种常见的同步机制,在许多分布式应用场景中发挥着重要作用。本文将深入探讨分布式锁与信号量的原理、特点、应用场景以及它们之间的异同点,并通过实际案例分析它们在分布式系统中的应用效果。 分布式锁是一种允许多个进程或线程在分布式环境中对共享资源进行互斥访问的同步机制。它的工作原理基于分布式协调服务,如ZooKeeper、Redis等,这些服务提供了一致性的数据存储和同步机制。分布式锁的主要特点包括:
recommend-type

ASP.NET基于WEB的工作计划流程管理系统的设计与实现(源代码+论文)【ASP】.zip

ASP.NET基于WEB的工作计划流程管理系统的设计与实现(源代码+论文)【ASP】
recommend-type

cryptography-3.4-cp36-abi3-macosx_10_10_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

基于Java的吉首大学假期留校工作系统(源码+论文+需求分析+数据库文件+演示视频).zip

本基于Web技术的B/S结构的系统采用jsp技术进行开发设计,开发环境是MyEclipse,服务器采用tomcat,通过jdbc驱动和数据库进行无缝连接,具有较高的完整性,一致性和安全性。 学生:登录之后,申请留校查看自己的申请记录 修改个人信息 辅导员:审核 查看申请记录 修改个人信息 院级管理员:审核辅导员通过得记录 查看申请记录 修改个人信息宿舍管理员:对审核通过的给予宿舍住宿登记,查看住宿登记记录
recommend-type

html bootstrap前端样式代码大全

html bootstrap前端样式代码大全
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性

![MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性](https://picx.zhimg.com/80/v2-8132d9acfebe1c248865e24dc5445720_1440w.webp?source=1def8aca) # 1. MATLAB结构体基础** MATLAB结构体是一种数据结构,用于存储和组织相关数据。它由一系列域组成,每个域都有一个名称和一个值。结构体提供了对数据的灵活访问和管理,使其成为组织和处理复杂数据集的理想选择。 MATLAB中创建结构体非常简单,使用struct函数即可。例如: ```matlab myStruct
recommend-type

详细描述一下STM32F103C8T6怎么与DHT11连接

STM32F103C8T6可以通过单总线协议与DHT11连接。连接步骤如下: 1. 将DHT11的VCC引脚连接到STM32F103C8T6的5V电源引脚; 2. 将DHT11的GND引脚连接到STM32F103C8T6的GND引脚; 3. 将DHT11的DATA引脚连接到STM32F103C8T6的GPIO引脚,可以选择任一GPIO引脚,需要在程序中配置; 4. 在程序中初始化GPIO引脚,将其设为输出模式,并输出高电平,持续至少18ms,以激活DHT11; 5. 将GPIO引脚设为输入模式,等待DHT11响应,DHT11会先输出一个80us的低电平,然后输出一个80us的高电平,
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。