karatsuba算法的高位多项式
时间: 2023-11-01 10:40:59 浏览: 78
acm.rar_高精度算法
Karatsuba算法是一种快速乘法算法,用于计算两个较大数的乘积。在计算高位多项式时,可以将其看作两个数的乘积,然后使用Karatsuba算法进行计算。
假设有两个高位多项式:
A(x) = a3x^3 + a2x^2 + a1x + a0
B(x) = b3x^3 + b2x^2 + b1x + b0
首先将A(x)和B(x)分别拆分成两个部分:
A(x) = a3x^(3/2) * x^(3/2) + a2x^(1/2) * x^(3/2) + a1x^(1/2) * x^(1/2) + a0
B(x) = b3x^(3/2) * x^(3/2) + b2x^(1/2) * x^(3/2) + b1x^(1/2) * x^(1/2) + b0
然后将A(x)和B(x)看作两个数的乘积:
A(x) = (a3x^(3/2) + a2x^(1/2)) * x^(3/2) + (a1x^(1/2) + a0)
B(x) = (b3x^(3/2) + b2x^(1/2)) * x^(3/2) + (b1x^(1/2) + b0)
然后使用Karatsuba算法计算这两个数的乘积:
P1 = (a3x^(3/2) + a2x^(1/2)) * (b3x^(3/2) + b2x^(1/2))
P2 = (a1x^(1/2) + a0) * (b1x^(1/2) + b0)
P3 = (a3x^(3/2) - a2x^(1/2) + a1x^(1/2) - a0) * (b3x^(3/2) - b2x^(1/2) + b1x^(1/2) - b0)
最后将这三个部分相加得到乘积:
A(x) * B(x) = P1 * x^3 + (P1 + P3 - P2) * x^(3/2) + (P2) * x + P3
这样就可以使用Karatsuba算法快速计算高位多项式的乘积了。
阅读全文