基于SpringCloud Alibaba微服务架构的酒店预定系统设计与实现中实体类为pojo、采用Controller、Service、Mapper三层结构,订单数据表为order、酒店数据表为hotel,怎么使用Apache Mahou 的推荐算法基于用户已预定的订单对用户进行酒店推荐的具体代码实现
首先,需要引入Apache Mahout的依赖。这里以Maven为例,在pom.xml文件中添加以下依赖:
<dependency>
<groupId>org.apache.mahout</groupId>
<artifactId>mahout-core</artifactId>
<version>0.13.0</version>
</dependency>
接下来,我们需要将订单数据和酒店数据转换成Mahout中的数据模型。Mahout中的数据模型主要有两种:User-Item数据模型和Item-Item数据模型。在这里,我们选择使用User-Item数据模型,即将用户和酒店看作是两个不同的实体,然后通过用户已预定的订单数据来推荐酒店。
我们可以先定义一个名为Order的类,用来表示订单数据:
public class Order {
private int userId;
private int hotelId;
private double rating;
// getters and setters
}
其中,rating表示用户对酒店的评分,可以根据实际情况进行设置。
接下来,我们定义一个名为Hotel的类,用来表示酒店数据:
public class Hotel {
private int hotelId;
private String name;
private String location;
// getters and setters
}
然后,我们需要将订单数据和酒店数据转换成Mahout中的数据模型。Mahout中的User-Item数据模型需要使用一个名为DataModel的类来表示,我们可以自定义一个实现该接口的类,例如:
public class OrderDataModel implements DataModel {
private List<Order> orders;
private Map<Integer, List<Preference>> userData;
private Map<Integer, List<Preference>> itemData;
public OrderDataModel(List<Order> orders) {
this.orders = orders;
this.userData = new HashMap<>();
this.itemData = new HashMap<>();
for (Order order : orders) {
Preference preference = new GenericPreference(order.getUserId(), order.getHotelId(), order.getRating());
if (!userData.containsKey(order.getUserId())) {
userData.put(order.getUserId(), new ArrayList<>());
}
userData.get(order.getUserId()).add(preference);
if (!itemData.containsKey(order.getHotelId())) {
itemData.put(order.getHotelId(), new ArrayList<>());
}
itemData.get(order.getHotelId()).add(preference);
}
}
@Override
public LongPrimitiveIterator getUserIDs() {
return new LongPrimitiveIterator() {
private final Iterator<Integer> iterator = userData.keySet().iterator();
@Override
public long nextLong() {
return iterator.next();
}
@Override
public long peek() {
return iterator.hasNext() ? iterator.next() : 0L;
}
@Override
public boolean hasNext() {
return iterator.hasNext();
}
@Override
public void remove() {
throw new UnsupportedOperationException();
}
};
}
@Override
public PreferenceArray getPreferencesFromUser(long userId) {
List<Preference> preferences = userData.get((int) userId);
if (preferences == null || preferences.isEmpty()) {
return new GenericUserPreferenceArray(0);
}
return new GenericUserPreferenceArray(preferences.toArray(new Preference[0]));
}
@Override
public FastIDSet getItemIDsFromUser(long userId) {
List<Preference> preferences = userData.get((int) userId);
if (preferences == null || preferences.isEmpty()) {
return new FastIDSet();
}
FastIDSet itemIDs = new FastIDSet(preferences.size());
for (Preference preference : preferences) {
itemIDs.add(preference.getItemID());
}
return itemIDs;
}
@Override
public LongPrimitiveIterator getItemIDs() {
return new LongPrimitiveIterator() {
private final Iterator<Integer> iterator = itemData.keySet().iterator();
@Override
public long nextLong() {
return iterator.next();
}
@Override
public long peek() {
return iterator.hasNext() ? iterator.next() : 0L;
}
@Override
public boolean hasNext() {
return iterator.hasNext();
}
@Override
public void remove() {
throw new UnsupportedOperationException();
}
};
}
@Override
public PreferenceArray getPreferencesForItem(long itemId) {
List<Preference> preferences = itemData.get((int) itemId);
if (preferences == null || preferences.isEmpty()) {
return new GenericItemPreferenceArray(0);
}
return new GenericItemPreferenceArray(preferences.toArray(new Preference[0]));
}
@Override
public Float getPreferenceValue(long userId, long itemId) {
List<Preference> preferences = userData.get((int) userId);
if (preferences == null || preferences.isEmpty()) {
return null;
}
for (Preference preference : preferences) {
if (preference.getItemID() == itemId) {
return preference.getValue();
}
}
return null;
}
@Override
public Long getPreferenceTime(long userId, long itemId) {
return null;
}
@Override
public int getNumUsers() {
return userData.size();
}
@Override
public int getNumItems() {
return itemData.size();
}
@Override
public int getNumUsersWithPreferenceFor(long itemId) {
List<Preference> preferences = itemData.get((int) itemId);
if (preferences == null || preferences.isEmpty()) {
return 0;
}
Set<Integer> userIds = new HashSet<>();
for (Preference preference : preferences) {
userIds.add(preference.getUserID());
}
return userIds.size();
}
@Override
public int getNumUsersWithPreference() {
return userData.size();
}
@Override
public void setPreference(long userId, long itemId, float value) {
throw new UnsupportedOperationException();
}
@Override
public void removePreference(long userId, long itemId) {
throw new UnsupportedOperationException();
}
@Override
public boolean hasPreferenceValues() {
return true;
}
@Override
public float getMaxPreference() {
return 5.0f;
}
@Override
public float getMinPreference() {
return 1.0f;
}
@Override
public void refresh(Collection<Refreshable> alreadyRefreshed) {
// do nothing
}
}
在上面的代码中,我们将订单数据转换成Mahout中的数据模型,并实现了DataModel接口中的各个方法。这样,我们就可以将OrderDataModel对象传入Mahout中的推荐算法中来进行推荐了。
最后,我们需要编写一个Controller来接收用户id,然后根据该用户已预定的订单数据来进行酒店推荐。代码示例如下:
@RestController
public class HotelRecommendationController {
@Autowired
private OrderMapper orderMapper;
@Autowired
private HotelMapper hotelMapper;
@GetMapping("/hotel/recommendation")
public List<Hotel> recommend(@RequestParam("userId") int userId) throws TasteException {
List<Order> orders = orderMapper.getOrdersByUserId(userId);
OrderDataModel dataModel = new OrderDataModel(orders);
UserSimilarity similarity = new LogLikelihoodSimilarity(dataModel);
UserNeighborhood neighborhood = new NearestNUserNeighborhood(10, similarity, dataModel);
Recommender recommender = new GenericUserBasedRecommender(dataModel, neighborhood, similarity);
List<RecommendedItem> recommendedItemList = recommender.recommend(userId, 5);
List<Hotel> recommendedHotels = new ArrayList<>();
for (RecommendedItem recommendedItem : recommendedItemList) {
Hotel hotel = hotelMapper.getHotelById((int) recommendedItem.getItemID());
recommendedHotels.add(hotel);
}
return recommendedHotels;
}
}
在上面的代码中,我们使用了Mahout中的User-Based Collaborative Filtering算法来进行推荐,并返回推荐的酒店列表。其中,NearestNUserNeighborhood表示选择与当前用户最相似的10个用户,LogLikelihoodSimilarity表示使用对数似然相似度计算用户之间的相似度。最后,我们根据推荐的酒店id从数据库中获取酒店信息,然后返回推荐的酒店列表。
相关推荐
















