用堆叠自编码器网络实现对指定文件夹内的4类三通道彩色图像进行分类并可视化混淆矩阵python代码

时间: 2024-05-04 14:17:25 浏览: 102
以下是用堆叠自编码器网络实现对指定文件夹内的4类三通道彩色图像进行分类并可视化混淆矩阵的 Python 代码: ```python import os import numpy as np from PIL import Image from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from keras.layers import Input, Dense from keras.models import Model import matplotlib.pyplot as plt # 定义参数 input_shape = (120, 120, 3) num_classes = 4 batch_size = 16 epochs = 50 # 加载数据 def load_data(): data = [] labels = [] for category in os.listdir('data'): for file in os.listdir(os.path.join('data', category)): img_path = os.path.join('data', category, file) img = Image.open(img_path).resize(input_shape[:2]) data.append(np.array(img)) labels.append(category) return np.array(data), np.array(labels) data, labels = load_data() # 将标签转换为数字 label_dict = {'Type1': 0, 'Type2': 1, 'Type3': 2, 'Type4': 3} labels = np.array([label_dict[label] for label in labels]) # 将数据拆分为训练集和测试集 train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size=0.2, random_state=42) # 归一化数据 train_data = train_data.astype('float32') / 255. test_data = test_data.astype('float32') / 255. # 定义模型 input_data = Input(shape=input_shape) x = Dense(256, activation='relu')(input_data) x = Dense(128, activation='relu')(x) encoded = Dense(64, activation='relu')(x) x = Dense(128, activation='relu')(encoded) x = Dense(256, activation='relu')(x) decoded = Dense(input_shape[2], activation='sigmoid')(x) autoencoder = Model(input_data, decoded) encoder = Model(input_data, encoded) # 编译模型 autoencoder.compile(optimizer='adam', loss='binary_crossentropy') # 训练模型 autoencoder.fit(train_data, train_data, epochs=epochs, batch_size=batch_size, shuffle=True, validation_data=(test_data, test_data)) # 提取特征 train_features = encoder.predict(train_data) test_features = encoder.predict(test_data) # 定义分类器 inputs = Input(shape=(64,)) x = Dense(32, activation='relu')(inputs) outputs = Dense(num_classes, activation='softmax')(x) classifier = Model(inputs, outputs) # 编译分类器 classifier.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 训练分类器 classifier.fit(train_features, train_labels, epochs=epochs, batch_size=batch_size, shuffle=True, validation_data=(test_features, test_labels)) # 预测测试集 predictions = classifier.predict(test_features) predictions = np.argmax(predictions, axis=1) # 计算混淆矩阵 cm = confusion_matrix(test_labels, predictions) # 可视化混淆矩阵 plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) plt.title('Confusion Matrix') plt.colorbar() tick_marks = np.arange(num_classes) plt.xticks(tick_marks, ['Type1', 'Type2', 'Type3', 'Type4'], rotation=45) plt.yticks(tick_marks, ['Type1', 'Type2', 'Type3', 'Type4']) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.show() ``` 其中,`data` 文件夹包含了所有的图像数据,每个子文件夹表示一个分类。代码首先加载数据,然后将标签转换为数字,并将数据拆分为训练集和测试集。接着,定义了一个堆叠自编码器网络,该网络可以将三通道的彩色图像压缩为一个 64 维的向量。使用该网络提取出的特征作为输入,训练一个简单的分类器。最后,使用预测结果计算混淆矩阵,并对其进行可视化。
阅读全文

相关推荐

最新推荐

recommend-type

python读取图像矩阵文件并转换为向量实例

本文将详细讲解如何使用Python读取图像矩阵文件并将其转换为向量,以及涉及到的旋转向量与旋转矩阵之间的转换。 首先,我们要理解图像矩阵的基本概念。图像矩阵通常是一个二维数组,每个元素代表像素的灰度值或颜色...
recommend-type

解析C#彩色图像灰度化算法的实现代码详解

在图像处理领域,彩色图像灰度化是一种常见的操作,它将多通道的彩色图像转换为单通道的灰度图像。这种转换有助于简化图像处理任务,例如图像分析、特征提取等。在C#中,我们可以利用GDI+库来实现这个过程。本文将...
recommend-type

pytorch实现对输入超过三通道的数据进行训练

总结一下,PyTorch实现对输入超过三通道数据的训练主要包括以下步骤: 1. 数据预处理:使用`np.stack`拼接多帧图像为多通道数据。 2. 数据保存:将处理后的数据保存在pickle文件中。 3. 自定义数据集:创建`Fire_...
recommend-type

keras自动编码器实现系列之卷积自动编码器操作

卷积自动编码器(Convolutional Autoencoder, CAE)是一种使用卷积神经网络(Convolutional Neural Network, CNN)架构的自动编码器,它在处理图像数据时表现出色,尤其在图像压缩、去噪、特征提取等领域。...
recommend-type

python使用pil进行图像处理(等比例压缩、裁剪)实例代码

Python中的PIL(Python Imaging Library)是一个强大的图像处理库,它提供了多种图像处理功能,包括等比例压缩和裁剪。本文将详细介绍如何使用PIL进行这些操作,并提供实例代码。 首先,了解PIL的基本概念: 1. **...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。