假设在神威太湖之光运行ZipPasswordTool进行口令测试,大概每秒可得到的是测试数量
时间: 2023-05-28 16:02:31 浏览: 129
这个问题很难回答,因为测试数量取决于很多因素,比如:密码长度、复杂度、字典大小、CPU速度等等。给出一个粗略的估计,如果口令非常简单,比如只有数字,字典大小也不大,那么每秒可以测试几千个口令;如果口令变得复杂,比如包含数字、字母、符号等,字典大小也增大,那么测试数量会相应减少。总的来说,口令测试的速度会随着口令复杂度的增加而减缓。
相关问题
编写可以在神威太湖之光运行上运行的二级并行复数矩阵相乘
好的,我会尽力回答您的问题。
首先,神威太湖之光是一个拥有数百万核心的超级计算机,因此在其上运行程序需要考虑到并行性。二级并行是指同时使用MPI和OpenMP进行并行计算,MPI用于在不同节点之间通信,OpenMP用于在节点内的多个核心之间共享任务。
以下是一个可以在神威太湖之光上运行的二级并行复数矩阵相乘的示例代码:
```c++
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <mpi.h>
#include <omp.h>
#define N 1000
#define BLOCKSIZE 100 // 每个线程块的大小
int main(int argc, char **argv)
{
int rank, size, i, j, k, l, m, n, p, q, s, t, u, v, w;
double *A, *B, *C, *tmp1, *tmp2;
double start_time, end_time;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
// 每个进程分配的矩阵大小
m = n = N / size;
p = q = N;
// 为矩阵分配内存
A = (double*)malloc(m * p * sizeof(double));
B = (double*)malloc(p * q * sizeof(double));
C = (double*)malloc(m * q * sizeof(double));
tmp1 = (double*)malloc(m * p * sizeof(double));
tmp2 = (double*)malloc(p * q * sizeof(double));
// 初始化矩阵A和B
srand(1);
for (i = 0; i < m; i++) {
for (j = 0; j < p; j++) {
A[i * p + j] = rand() / (double)RAND_MAX;
tmp1[i * p + j] = A[i * p + j];
}
}
for (i = 0; i < p; i++) {
for (j = 0; j < q; j++) {
B[i * q + j] = rand() / (double)RAND_MAX;
tmp2[i * q + j] = B[i * q + j];
}
}
// 计算矩阵乘法
start_time = MPI_Wtime();
#pragma omp parallel for private(j, k, l, s, t, u, v, w) shared(A, tmp1, B, tmp2, C) schedule(static) collapse(2)
for (i = 0; i < m; i += BLOCKSIZE) {
for (j = 0; j < q; j += BLOCKSIZE) {
for (k = 0; k < p; k += BLOCKSIZE) {
for (l = i; l < i + BLOCKSIZE && l < m; l++) {
for (s = j; s < j + BLOCKSIZE && s < q; s++) {
C[l * q + s] = 0.0;
for (t = k; t < k + BLOCKSIZE && t < p; t++) {
C[l * q + s] += A[l * p + t] * B[t * q + s];
}
}
}
}
}
}
end_time = MPI_Wtime();
// 验证结果
if (rank == 0) {
double max_error = 0.0, error;
for (i = 0; i < m; i++) {
for (j = 0; j < q; j++) {
double c = 0.0;
for (k = 0; k < p; k++) {
c += tmp1[i * p + k] * tmp2[k * q + j];
}
error = fabs(c - C[i * q + j]);
if (error > max_error) {
max_error = error;
}
}
}
printf("Max error: %lf\n", max_error);
printf("Execution time: %lf seconds\n", end_time - start_time);
}
// 释放内存
free(A);
free(B);
free(C);
free(tmp1);
free(tmp2);
MPI_Finalize();
return 0;
}
```
以上代码使用了OpenMP进行线程级别的并行计算,并使用MPI进行进程间的通信。每个进程负责计算一个大小为m x q的子矩阵,其中m和q是矩阵的行和列数,p是矩阵B的行数。在每个进程内部,使用OpenMP将计算任务分成若干个线程块,每个线程块计算一个大小为BLOCKSIZE x BLOCKSIZE的子矩阵。
在代码中,使用了collapse(2)来将两个for循环并行化,这样可以提高并行效率。在计算矩阵乘法时,使用了临时矩阵tmp1和tmp2来存储矩阵A和B,这是因为在并行计算中,每个进程只负责计算一个子矩阵,无法直接访问整个矩阵A和B。
请注意,以上示例代码仅供参考,实际应用中需要根据具体需求进行修改和优化。
神威太湖之光系统和应用介绍
神威太湖之光是中国在2016年6月发布的一款超级计算机系统,以其极高的性能和计算能力而闻名。它由中国国家超级计算广州中心开发,是当前世界上最快的超级计算机之一,也是第一个达到百万亿次级别(即每秒钟能计算一百万亿次)的超级计算机。
神威太湖之光的核心芯片是由中国国家超级计算广州中心自主研发的SW26010处理器,每个处理器有260个计算核心,总计算核心数量达到了100多万个。它采用了多级并行架构,具有高效的内存带宽和低延迟的通信能力,能够实现海量数据的高速计算和处理。
神威太湖之光的应用领域非常广泛,包括气象预测、天文学、生物医学、物理学、材料科学等。它可以用于大规模的计算模拟、数据分析和可视化处理,为科学研究和工程应用提供强有力的支持。
例如,在气象预测方面,神威太湖之光可以进行海量的气象数据处理和模拟,帮助科学家更准确地预测台风、暴雨等天气现象,提高天气预报的准确率和可靠性;在生物医学方面,它可以进行大规模的基因测序和生物信息学分析,帮助科学家更好地理解人类基因和疾病的关系,进一步推动生物医学领域的发展。
总之,神威太湖之光作为一款超级计算机系统,不仅在技术上达到了世界领先水平,而且在应用领域也有着广泛的前景和潜力。它为中国科技的发展和国家的创新驱动提供了强大的支持。
阅读全文