深度q网络对八分类数据进行强化学习代码
时间: 2023-07-19 18:04:41 浏览: 137
强化学习分类_人工智能、神经网络、深度学习_
以下是使用深度 Q 网络(DQN)对八分类数据进行强化学习的 Python 代码示例:
```python
import numpy as np
import random
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = []
self.gamma = 0.95 # discount rate
self.epsilon = 1.0 # exploration rate
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.model = self._build_model()
def _build_model(self):
# Neural Network for Deep Q Learning
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0])
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = (reward + self.gamma *
np.amax(self.model.predict(next_state)[0]))
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self, name):
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)
# main function
if __name__ == "__main__":
# initialize gym environment and the agent
state_size = 8
action_size = 8
agent = DQNAgent(state_size, action_size)
# train DQN agent
batch_size = 32
episodes = 1000
for e in range(episodes):
state = np.random.rand(1, state_size)
for time in range(500):
action = agent.act(state)
next_state = np.random.rand(1, state_size)
reward = np.random.randint(0, 2)
done = False
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
print("episode: {}/{}, score: {}, e: {:.2}"
.format(e, episodes, time, agent.epsilon))
break
if len(agent.memory) > batch_size:
agent.replay(batch_size)
# save trained model weights
agent.save("model.h5")
```
以上代码示例中,采用了 Keras 框架搭建了一个具有两个隐藏层的神经网络模型,并使用 Q-learning 算法进行训练。在训练过程中,每个时间步,根据当前状态选择一个动作并执行,然后通过环境返回一个奖励信号以及下一个状态。将这些信息存储在记忆库中,每次从记忆库中随机抽取一批数据进行训练,直到达到一定的训练次数或准确率。最后保存训练好的模型权重,以备后续使用。
阅读全文