def baseline_model(): model = Sequential() model.add(Conv1D(16, 3, input_shape=(288, 1))) model.add(Conv1D(16, 3, activation='tanh')) model.add(MaxPooling1D(3)) model.add(Conv1D(64, 3, activation='tanh')) model.add(Conv1D(64, 3, activation='tanh')) model.add(MaxPooling1D(3)) model.add(Conv1D(64, 3, activation='tanh')) model.add(Conv1D(64, 3, activation='tanh')) model.add(MaxPooling1D(3)) model.add(Flatten()) model.add(Dense(3, activation='softmax')) plot_model(model, to_file='./model_classifier.png', show_shapes=True) print(model.summary()) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model的网络结构
时间: 2024-03-28 12:37:22 浏览: 52
这是一个基线模型的网络结构,它包含了卷积层、池化层和全连接层。具体来说,它包括了三个卷积层,每个卷积层后面都跟着一个池化层。卷积层用于提取特征,池化层用于降低维度和减小过拟合,最后通过全连接层输出分类结果。该模型输入的数据形状为(288, 1),输出为3个类别。网络结构图已保存在 './model_classifier.png'。
相关问题
import tensorflow as tf from im_dataset import train_image, train_label, test_image, test_label from AlexNet8 import AlexNet8 from baseline import baseline from InceptionNet import Inception10 from Resnet18 import ResNet18 import os import matplotlib.pyplot as plt import argparse import numpy as np parse = argparse.ArgumentParser(description="CVAE model for generation of metamaterial") hyperparameter_set = parse.add_argument_group(title='HyperParameter Setting') dim_set = parse.add_argument_group(title='Dim setting') hyperparameter_set.add_argument("--num_epochs",type=int,default=200,help="Number of train epochs") hyperparameter_set.add_argument("--learning_rate",type=float,default=4e-3,help="learning rate") hyperparameter_set.add_argument("--image_size",type=int,default=16*16,help="vector size of image") hyperparameter_set.add_argument("--batch_size",type=int,default=16,help="batch size of database") dim_set.add_argument("--z_dim",type=int,default=20,help="dim of latent variable") dim_set.add_argument("--feature_dim",type=int,default=32,help="dim of feature vector") dim_set.add_argument("--phase_curve_dim",type=int,default=41,help="dim of phase curve vector") dim_set.add_argument("--image_dim",type=int,default=16,help="image size: [image_dim,image_dim,1]") args = parse.parse_args() def preprocess(x, y): x = tf.io.read_file(x) x = tf.image.decode_png(x, channels=1) x = tf.cast(x,dtype=tf.float32) /255. x1 = tf.concat([x, x], 0) x2 = tf.concat([x1, x1], 1) x = x - 0.5 y = tf.convert_to_tensor(y) y = tf.cast(y,dtype=tf.float32) return x2, y train_db = tf.data.Dataset.from_tensor_slices((train_image, train_label)) train_db = train_db.shuffle(100).map(preprocess).batch(args.batch_size) test_db = tf.data.Dataset.from_tensor_slices((test_image, test_label)) test_db = test_db.map(preprocess).batch(args.batch_size) model = ResNet18([2, 2, 2, 2]) model.build(input_shape=(args.batch_size, 32, 32, 1)) model.compile(optimizer = tf.keras.optimizers.Adam(lr = 1e-3), loss = tf.keras.losses.MSE, metrics = ['MSE']) checkpoint_save_path = "./checkpoint/InceptionNet_im_3/checkpoint.ckpt" if os.path.exists(checkpoint_save_path+'.index'): print('------------------load the model---------------------') model.load_weights(checkpoint_save_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,save_weights_only=True,save_best_only=True) history = model.fit(train_db, epochs=500, validation_data=test_db, validation_freq=1, callbacks=[cp_callback]) model.summary() acc = history.history['loss'] val_acc = history.history['val_loss'] plt.plot(acc, label='Training MSE') plt.plot(val_acc, label='Validation MSE') plt.title('Training and Validation MSE') plt.legend() plt.show()
这段代码是使用 TensorFlow 构建了一个 ResNet18 模型,对图像进行分类任务。其中使用了 argparse 库来设置超参数,使用了 tf.data.Dataset 来进行数据处理和加载,使用了 tf.keras.callbacks.ModelCheckpoint 来保存模型的训练结果。同时还使用了 matplotlib.pyplot 库来绘制训练和验证的 MSE(均方误差)曲线。
class Baseline(nn.Module): def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[], dw_expand=1, ffn_expand=2): super().__init__() self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.encoders = nn.ModuleList() self.decoders = nn.ModuleList() self.middle_blks = nn.ModuleList() self.ups = nn.ModuleList() self.downs = nn.ModuleList()代码中文含义
这段代码是一个名为 Baseline 的 PyTorch 模型的定义,它包含了一个卷积神经网络的编码器和解码器部分,用于图像处理任务。其中:
- img_channel 表示输入图像的通道数(默认为 3);
- width 表示网络中使用的特征图的通道数(默认为 16);
- middle_blk_num 表示中间块的数量(默认为 1);
- enc_blk_nums 和 dec_blk_nums 分别表示编码器和解码器中使用的块的数量(默认为空);
- dw_expand 和 ffn_expand 分别表示块中深度扩展和前馈扩展的倍数(默认为 1 和 2)。
该模型包含以下层:
- intro:输入图像的卷积层,输出特征图;
- ending:输出图像的卷积层,将特征图转化为图像;
- encoders:编码器中的块,用于逐步提取图像特征;
- decoders:解码器中的块,用于逐步恢复原始图像;
- middle_blks:中间块,用于连接编码器和解码器;
- ups 和 downs:上采样和下采样层,用于图像尺寸的调整。
这些层被封装在 PyTorch 中的 nn.ModuleList 中,可以通过调用 forward 方法来执行模型的前向传播。
阅读全文