def forward(self, x): context = x[0] mask = x[2] _, pooled = self.bert(context, attention_mask=mask, output_all_encoded_layers=True) out = self.fc(pooled) return out

时间: 2023-06-17 15:02:46 浏览: 53
这是一个 PyTorch 模型的前向传递函数,输入参数 x 是一个包含三个元素的元组,分别是输入文本、输入文本的掩码和输入文本的段落 ID。该函数使用 BERT 模型对输入文本进行编码,然后使用全连接层对编码结果进行分类或回归等任务。其中,掩码用于指示哪些单词是 padding,哪些单词是有意义的,从而在计算 attention 时忽略 padding 位置。函数返回全连接层的输出。
相关问题

class MyBertModel(nn.Module): def __init__(self, config): super(MyBertModel, self).__init__() self.bert = BertModel.from_pretrained(config.bert_path) for param in self.bert.parameters(): param.requires_grad = True self.fc = nn.Linear(config.hidden_size, config.num_classes) def forward(self, x): context = x[0] # 输入的句子 mask = x[2] # 对padding部分进行mask,和句子一个size,padding部分用0表示,如:[1, 1, 1, 1, 0, 0] _, pooled = self.bert(context, attention_mask=mask, output_all_encoded_layers=False) out = self.fc(pooled) return out

这是一个 PyTorch 的模型类,名为 `MyBertModel`,继承自 `nn.Module`。这个模型使用了预训练的 BERT 模型,通过 `BertModel.from_pretrained(config.bert_path)` 加载预训练模型。然后,使用一个全连接层 `nn.Linear` 将 BERT 的输出映射到指定的类别个数上,即 `config.num_classes`。 在 forward 方法中,输入 `x` 是一个元组,包含三个张量:句子的 token id 序列 `context`,对应的 token 序列长度 `seq_len`,以及 padding 部分的掩码 `mask`。使用 BERT 模型对 `context` 序列进行编码,得到输出 `pooled`。最后,将 `pooled` 传入全连接层 `self.fc` 得到输出结果 `out`,并返回。

class EntityRankerClassifier(nn.Module): def __init__(self, n_classes, PRE_TRAINED_MODEL_NAME): super(EntityRankerClassifier, self).__init__() self.bert = AutoModel.from_pretrained(PRE_TRAINED_MODEL_NAME) self.drop = nn.Dropout(p=0.3) self.out = nn.Linear(self.bert.config.hidden_size, n_classes) def forward(self, input_ids, attention_mask): _, pooled_output = self.bert( input_ids=input_ids, attention_mask=attention_mask, return_dict=False ) output = self.drop(pooled_output) return self.out(output)

这是一个使用预训练的BERT模型进行分类的PyTorch模型,具体来说,该模型包含以下几个部分: 1. 初始化函数:接受两个参数,一个是输出类别数n_classes,一个是预训练模型的名称PRE_TRAINED_MODEL_NAME,通过调用父类初始化函数来初始化模型。 2. 模型结构:该模型使用预训练的BERT模型作为编码器,通过AutoModel.from_pretrained函数加载预训练模型,并将输入的文本序列input_ids和注意力掩码attention_mask传入BERT模型中,得到BERT模型的输出。这里使用的是BERT模型的池化输出pooled_output,即将所有单词的输出取平均得到的一维向量,作为文本的表示。接着通过一个Dropout层进行正则化,最后通过一个全连接层进行分类。 3. 前向传播函数:接受两个参数,一个是文本序列input_ids,一个是注意力掩码attention_mask,将这两个参数传入模型结构中,得到模型的输出。 需要注意的是,在使用该模型进行分类时,需要将输入的文本序列转换为对应的input_ids和attention_mask,可以使用tokenizer将文本序列转换为模型所需的格式。在训练模型时,需要使用交叉熵损失函数和优化器对模型进行训练。

相关推荐

为以下代码写注释:class TransformerClassifier(torch.nn.Module): def __init__(self, num_labels): super().__init__() self.bert = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=num_labels) # print(self.bert.config.hidden_size) #768 self.dropout = torch.nn.Dropout(0.1) self.classifier1 = torch.nn.Linear(640, 256) self.classifier2 = torch.nn.Linear(256, num_labels) self.regress1 = torch.nn.Linear(640, 256) self.regress2 = torch.nn.Linear(256, 2) self.regress3 = torch.nn.Linear(640, 256) self.regress4 = torch.nn.Linear(256, 2) # self.regress3 = torch.nn.Linear(64, 1) # self.regress3 = torch.nn.Linear(640, 256) # self.regress4 = torch.nn.Linear(256, 1) # self.soft1 = torch.nn.Softmax(dim=1) def forward(self, input_ids, attention_mask, token_type_ids): # outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) # pooled_output = outputs.logits # # pooled_output = self.dropout(pooled_output) # # logits = self.classifier(pooled_output) outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) logits = outputs.logits clas = F.relu(self.classifier1(logits)) clas = self.classifier2(clas) death = F.relu(self.regress1(logits)) # xingqi = F.relu(self.regress2(xingqi)) death = self.regress2(death) life = F.relu(self.regress3(logits)) # xingqi = F.relu(self.regress2(xingqi)) life = self.regress4(life) # fakuan = F.relu(self.regress3(logits)) # fakuan = self.regress4(fakuan) # print(logits.shape) # logits = self.soft1(logits) # print(logits) # print(logits.shape) return clas,death,life

import tensorflow as tf import tensorflow_hub as hub from tensorflow.keras import layers import bert import numpy as np from transformers import BertTokenizer, BertModel # 设置BERT模型的路径和参数 bert_path = "E:\\AAA\\523\\BERT-pytorch-master\\bert1.ckpt" max_seq_length = 128 train_batch_size = 32 learning_rate = 2e-5 num_train_epochs = 3 # 加载BERT模型 def create_model(): input_word_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_mask") segment_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="segment_ids") bert_layer = hub.KerasLayer(bert_path, trainable=True) pooled_output, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids]) output = layers.Dense(1, activation='sigmoid')(pooled_output) model = tf.keras.models.Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=output) return model # 准备数据 def create_input_data(sentences, labels): tokenizer = bert.tokenization.FullTokenizer(vocab_file=bert_path + "trainer/vocab.small", do_lower_case=True) # tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') input_ids = [] input_masks = [] segment_ids = [] for sentence in sentences: tokens = tokenizer.tokenize(sentence) tokens = ["[CLS]"] + tokens + ["[SEP]"] input_id = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_id) segment_id = [0] * len(input_id) padding_length = max_seq_length - len(input_id) input_id += [0] * padding_length input_mask += [0] * padding_length segment_id += [0] * padding_length input_ids.append(input_id) input_masks.append(input_mask) segment_ids.append(segment_id) return np.array(input_ids), np.array(input_masks), np.array(segment_ids), np.array(labels) # 加载训练数据 train_sentences = ["Example sentence 1", "Example sentence 2", ...] train_labels = [0, 1, ...] train_input_ids, train_input_masks, train_segment_ids, train_labels = create_input_data(train_sentences, train_labels) # 构建模型 model = create_model() model.compile(optimizer=tf.keras.optimizers.Adam(lr=learning_rate), loss='binary_crossentropy', metrics=['accuracy']) # 开始微调 model.fit([train_input_ids, train_input_masks, train_segment_ids], train_labels, batch_size=train_batch_size, epochs=num_train_epochs)这段代码有什么问题吗?

from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt import torch.nn as nn import torch # 定义超像素池化层 class SuperpixelPooling(nn.Module): def init(self, n_segments): super(SuperpixelPooling, self).init() self.n_segments = n_segments def forward(self, x): # 获取超像素标记图 segments = slic(x, n_segments=self.n_segments, compactness=10) # 将超像素标记图转换为张量 segments_tensor = torch.from_numpy(segments).unsqueeze(0).float() # 在超像素维度上进行最大池化 pooled = nn.AdaptiveMaxPool2d((self.n_segments, 1))(x * segments_tensor) # 压缩超像素维度 pooled = pooled.squeeze(3) # 返回池化后的特征图 return pooled # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 将超像素标记图转换为张量 segments_tensor = torch.from_numpy(segments).unsqueeze(0).float() # 将超像素索引映射可视化 plt.imshow(segments, cmap='gray') plt.show() # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((mark_boundaries(img_np, segments) * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg') # 使用超像素池化层进行池化 pooling_layer = SuperpixelPooling(n_segments=60) pooled_tensor = pooling_layer(img_tensor) # 将超像素池化后的特征图可视化 plt.imshow(pooled_tensor.squeeze().numpy().transpose(1, 0), cmap='gray') plt.show() 上述代码出现问题: pooled = nn.AdaptiveMaxPool2d((self.n_segments, 1))(x * segments_tensor) RuntimeError: The size of tensor a (512) must match the size of tensor b (3) at non-singleton dimension 2,如何修改

import torch import torch.nn.functional as F from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 可视化超像素索引映射 plt.imshow(segments, cmap='gray') plt.show() # 将超像素索引映射可视化 segment_img = mark_boundaries(img_np, segments) # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((segment_img * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg') # 定义超像素池化函数 def superpixel_pooling(feature_map, segments): # 获取超像素数量和特征维度 n_segments = np.unique(segments).size n_channels = feature_map.shape[0] # 初始化超像素特征 pooled_features = torch.zeros((n_segments, n_channels)) # 对每个超像素内的像素特征进行聚合 for segment_id in range(n_segments): mask = (segments == segment_id).reshape(-1, 1, 1) mask = torch.from_numpy(mask).float() # 转换为 PyTorch 张量并进行类型转换 pooled_feature = (feature_map * mask).sum(dim=(1, 2)) / mask.sum() pooled_features[segment_id] = pooled_feature return pooled_features # 进行超像素池化 pooled_features = superpixel_pooling(img_tensor, segments) # 可视化超像素特征图 plt.imshow(pooled_features.transpose(0, 1), cmap='gray') plt.show(),上述代码出现问题:pooled_feature = (feature_map * mask).sum(dim=(1, 2)) / mask.sum() RuntimeError: The size of tensor a (3) must match the size of tensor b (262144) at non-singleton dimension 1,如何 修改

import torch import torch.nn.functional as F from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 可视化超像素索引映射 plt.imshow(segments, cmap='gray') plt.show() # 将超像素索引映射可视化 segment_img = mark_boundaries(img_np, segments) # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((segment_img * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg') # 定义超像素池化函数 def superpixel_pooling(feature_map, segments): # 获取超像素数量和特征维度 n_segments = np.unique(segments).size n_channels = feature_map.shape[0] # 初始化超像素特征 pooled_features = torch.zeros((n_segments, n_channels)) # 对每个超像素内的像素特征进行聚合 for segment_id in range(n_segments): mask = (segments == segment_id).reshape(-1, 1, 1) pooled_feature = (feature_map * mask.float()).sum(dim=(1, 2)) / mask.sum() pooled_features[segment_id] = pooled_feature return pooled_features # 进行超像素池化 pooled_features = superpixel_pooling(img_tensor, segments) # 可视化超像素特征图 plt.imshow(pooled_features.transpose(0, 1), cmap='gray') plt.show(),上述代码出现问题:AttributeError: 'numpy.ndarray' object has no attribute 'float'

class PointnetSAModuleMSG(_PointnetSAModuleBase): """ Pointnet set abstraction layer with multiscale grouping and attention mechanism """ def init(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False): """ :param npoint: int :param radii: list of float, list of radii to group with :param nsamples: list of int, number of samples in each ball query :param mlps: list of list of int, spec of the pointnet before the global pooling for each scale :param bn: whether to use batchnorm :param use_xyz: :param pool_method: max_pool / avg_pool :param instance_norm: whether to use instance_norm """ super().init() assert len(radii) == len(nsamples) == len(mlps) self.npoint = npoint self.groupers = nn.ModuleList() self.mlps = nn.ModuleList() # Add attention module self.attentions = nn.ModuleList() for i in range(len(radii)): radius = radii[i] nsample = nsamples[i] self.groupers.append( pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz) if npoint is not None else pointnet2_utils.GroupAll(use_xyz) ) mlp_spec = mlps[i] if use_xyz: mlp_spec[0] += 3 # Add attention module for each scale self.attentions.append(Attention(mlp_spec[-1])) self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm)) self.pool_method = pool_method def forward(self, xyz, features): """ :param xyz: (B, N, 3) xyz coordinates of the points :param features: (B, N, C) input features :return: (B, npoint, mlp[-1]) tensor """ new_features_list = [] for i in range(len(self.groupers)): grouper = self.groupers[i] mlp = self.mlps[i] attention = self.attentions[i] # Group points and features grouped_xyz, grouped_features = grouper(xyz, features) # Apply MLP to each group grouped_features = mlp(grouped_features) # Apply attention mechanism to the features of each group grouped_features = attention(grouped_features) # Perform pooling over each group if self.pool_method == 'max_pool': pooled_features = torch.max(grouped_features, dim=2)[0] else: pooled_features = torch.mean(grouped_features, dim=2) new_features_list.append(pooled_features) # Concatenate features from different scales new_features = torch.cat(new_features_list, dim=1) return new_features在该类中使用的QueryAndGroup类会主动将该类所继承的父类的返回值传入QueryAndGroup类中的forward函数吗

from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt import torch.nn as nn import torch # 定义超像素池化层 class SuperpixelPooling(nn.Module): def init(self, n_segments): super(SuperpixelPooling, self).init() self.n_segments = n_segments def forward(self, x): # 使用 SLIC 算法生成超像素标记图 segments = slic(x.numpy().transpose(1, 2, 0), n_segments=self.n_segments, compactness=10) # 将超像素标记图转换为张量 segments_tensor = torch.from_numpy(segments).unsqueeze(0).unsqueeze(0) # 将张量 x 与超像素标记图张量 segments_tensor 进行逐元素相乘 pooled = x * segments_tensor.float() # 在超像素维度上进行最大池化 pooled = nn.AdaptiveMaxPool2d((self.n_segments, 1))(pooled) # 压缩超像素维度 pooled = pooled.squeeze(3) # 返回池化后的特征图 return pooled # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 将超像素标记图转换为张量 segments_tensor = torch.from_numpy(segments).unsqueeze(0).float() # 将超像素索引映射可视化 plt.imshow(segments, cmap='gray') plt.show() # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((mark_boundaries(img_np, segments) * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg') # 使用超像素池化层进行池化 pooling_layer = SuperpixelPooling(n_segments=60) pooled_tensor = pooling_layer(img_tensor) # 将超像素池化后的特征图可视化 plt.imshow(pooled_tensor.squeeze().numpy().transpose(1, 0), cmap='gray') plt.show() ,上述代码出现问题:segments = slic(x.numpy().transpose(1, 2, 0), n_segments=self.n_segments, compactness=10) ValueError: axes don't match array,如何修改

最新推荐

recommend-type

####这是一篇对python的详细解析

python
recommend-type

菜日常菜日常菜日常菜日常

菜日常菜日常菜日常菜日常
recommend-type

VB学生档案管理系统设计(源代码+论文).rar

计算机专业毕业设计VB精品论文资源
recommend-type

电商到底怎么做?淘系电商三维经营心法(59节课)-课程网盘链接提取码下载 .txt

课程内容: 10-经营常见4大循环-被资本绑架思维.mp4 11-落地中的47个坑-产品坑.mp4 12-落地中的47个坑-一把手坑.mp4 13-落地中的47个坑-迷信坑.mp4 14-落地中的47个坑-缺乏坑.mp4 15-落地中的47个坑-团队坑.mp4 16-电商经营常见导致的10种挂法.mp4 18-淘系电商干法介绍.mp4 19-淘系电商的特点.mp4 20-淘系买家购物场景.mp4 21-淘系干法-标品.mp4 22-淘系电商干法-半标品.mp4 23-答疑.mp4 25-3类7种常见“干法”模型.mp4 26-6类产品日常运营报表.mp4 27-6类产品日常运营报表-高客单价店铺.mp4 28-6类产品运营报表-低客单价.mp4 29-6类产品运营报表-爆款数据模型季节性商品.mp4 2-前言.mp4 30-6类产品日常运营-标品.mp4 31-6类产品日常运营报表-非标品.mp4 32-6类产品日常运营报表-全店客服.mp4 33-执行就是一条:运营公式.mp4 35-搜索算法逻辑.mp4 36-2024年词层分层“激
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依