#encoding=utf8 import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision import os if os.path.exists('/data/workspace/course/step3/cnn.pkl'): os.remove('/data/workspace/course/step3/cnn.pkl') #加载数据 train_data = torchvision.datasets.MNIST( root='/data/workspace/course/step3/mnist', train=True, # this is training data transform=torchvision.transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to download=False, ) #取6000个样本为训练集 train_data_tiny = [] for i in range(6000): train_data_tiny.append(train_data[i]) train_data = train_data_tiny #********* Begin *********# #********* End *********# #保存模型 torch.save(cnn.state_dict(), '/data/workspace/course/step3/cnn.pkl') 帮我补全Begin-End区域代码,实现使用pytorch搭建出卷积神经网络模型,再对模型进行训练

时间: 2023-06-27 12:02:12 浏览: 51
#encoding=utf8 import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision import os class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d( in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2, ), nn.ReLU(), nn.MaxPool2d(kernel_size=2), ) self.conv2 = nn.Sequential( nn.Conv2d(16, 32, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2), ) self.out = nn.Linear(32 * 7 * 7, 10) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0), -1) output = self.out(x) return output #加载数据 train_data = torchvision.datasets.MNIST( root='/data/workspace/course/step3/mnist', train=True, transform=torchvision.transforms.ToTensor(), download=False, ) #取6000个样本为训练集 train_data_tiny = [] for i in range(6000): train_data_tiny.append(train_data[i]) train_data = train_data_tiny #实例化CNN模型 cnn = CNN() #定义损失函数 loss_func = nn.CrossEntropyLoss() #定义优化器 optimizer = torch.optim.Adam(cnn.parameters(), lr=0.01) #定义数据加载器 train_loader = Data.DataLoader(dataset=train_data, batch_size=64, shuffle=True) #开始训练 for epoch in range(10): for step, (x, y) in enumerate(train_loader): b_x = Variable(x) b_y = Variable(y) output = cnn(b_x) loss = loss_func(output, b_y) optimizer.zero_grad() loss.backward() optimizer.step() if step % 50 == 0: test_output = cnn(torch.unsqueeze(train_data_tiny[0][0], dim=0)) pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze() accuracy = sum(pred_y == train_data_tiny[0][1]) / float(train_data_tiny[0][1].shape[0]) print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy) #保存模型 torch.save(cnn.state_dict(), '/data/workspace/course/step3/cnn.pkl')

相关推荐

最新推荐

APScheduler-3.0.0b2-py2.py3-none-any.whl.zip

APScheduler-3.0.0b2-py2.py3-none-any.whl.zip

apu007_automotive_kes.pdf

apu007_automotive_kes.pdf

【数据分析及可视化】大型集团企业数据分析及可视化建设方案WORD.docx

【数据分析及可视化】大型集团企业数据分析及可视化建设方案WORD.docx

MIL_STD_1364J.537.pdf

MIL_STD_1364J.537.pdf

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

hbase中时间戳的精确度和hbase中列族和列名的分隔符是什么

我已经回答了关于HBase中时间戳的精确度的问题,现在回答你的第二个问题: 在HBase中,列族和列名的分隔符是冒号(:)。例如,如果你有一个列族为“info”,列名为“name”的列,那么在HBase中的完整列名将是“info:name”。这个分隔符是在HBase的设计中被硬编码的,不能更改。这个分隔符在HBase的API中也得到了体现,例如在Java API中,可以使用“:`”来将列族和列名分隔开来,如下所示: ```java Get get = new Get(Bytes.toBytes("rowkey")); get.addColumn(Bytes.toBytes("info"),

spring boot应用启动原理分析.docx

spring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

粒子群多目标算法matlab代码【算法实现步骤】计算适应度函数

# 1. 粒子群多目标算法简介 ## 1.1 粒子群多目标算法概述 在多目标优化问题中,粒子群多目标算法是一种常用的元启发式优化算法。它借鉴了鸟群觅食的行为,通过不断调整粒子的位置和速度来搜索最优解空间。相比于传统的单目标优化算法,粒子群多目标算法能够有效解决多目标优化问题。 ## 1.2 算法原理与特点 粒子群多目标算法的核心原理是通过模拟群体中粒子的运动,不断更新粒子的位置和速度,以达到最优解。其特点包括易于实现、收敛速度快、对参数不敏感等。 ## 1.3 相关研究现状分析 目前,粒子群多目标算法在多目标优化领域得到了广泛应用,并在不同领域取得了一定的成果。研究者们也在不断探索