用theano实现Resnet的特征融合随机初始化
时间: 2024-04-25 22:03:42 浏览: 132
ResNet是一种非常有效的深度神经网络结构,它可以通过残差学习来解决深度学习中的梯度消失和梯度爆炸问题。特征融合是将多个特征图进行合并的过程,可以提高模型的表现。在这里,我将介绍如何使用Theano实现ResNet的特征融合随机初始化。
首先,我们需要导入Theano和其他必要的库:
``` python
import theano
import theano.tensor as T
import numpy as np
import lasagne
```
然后,我们定义ResNet的基本块:
``` python
def residual_block(input_layer, output_channels, downsample=False):
input_channels = input_layer.output_shape[1]
if downsample:
stride = (2, 2)
filter_size = (3, 3)
pool_layer = lasagne.layers.MaxPool2DLayer(input_layer, pool_size=(2, 2), stride=(2, 2), mode='average_inc_pad')
else:
stride = (1, 1)
filter_size = (3, 3)
pool_layer = input_layer
residual = lasagne.layers.Conv2DLayer(pool_layer, num_filters=output_channels, filter_size=filter_size, stride=stride, pad='same', nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.HeNormal(gain='relu'))
residual = lasagne.layers.Conv2DLayer(residual, num_filters=output_channels, filter_size=filter_size, stride=(1, 1), pad='same', nonlinearity=None, W=lasagne.init.HeNormal(gain=1.0))
if downsample or input_channels != output_channels:
shortcut = lasagne.layers.Conv2DLayer(pool_layer, num_filters=output_channels, filter_size=(1, 1), stride=stride, pad='same', nonlinearity=None, W=lasagne.init.HeNormal(gain=1.0))
else:
shortcut = pool_layer
return lasagne.layers.NonlinearityLayer(lasagne.layers.ElemwiseSumLayer([shortcut, residual]), nonlinearity=lasagne.nonlinearities.rectify)
```
接着,我们定义ResNet的整个网络结构:
``` python
def build_model(input_shape):
net = {}
net['input'] = lasagne.layers.InputLayer(shape=input_shape)
net['conv1'] = lasagne.layers.Conv2DLayer(net['input'], num_filters=64, filter_size=(7, 7), stride=(2, 2), pad='same', nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.HeNormal(gain='relu'))
net['pool1'] = lasagne.layers.MaxPool2DLayer(net['conv1'], pool_size=(3, 3), stride=(2, 2), mode='average_inc_pad')
net['block1_1'] = residual_block(net['pool1'], 64)
net['block1_2'] = residual_block(net['block1_1'], 64)
net['block2_1'] = residual_block(net['block1_2'], 128, downsample=True)
net['block2_2'] = residual_block(net['block2_1'], 128)
net['block3_1'] = residual_block(net['block2_2'], 256, downsample=True)
net['block3_2'] = residual_block(net['block3_1'], 256)
net['block4_1'] = residual_block(net['block3_2'], 512, downsample=True)
net['block4_2'] = residual_block(net['block4_1'], 512)
net['pool2'] = lasagne.layers.GlobalPoolLayer(net['block4_2'])
net['fc'] = lasagne.layers.DenseLayer(net['pool2'], num_units=10, nonlinearity=lasagne.nonlinearities.softmax, W=lasagne.init.GlorotUniform())
return net
```
最后,我们定义训练过程:
``` python
def train(X_train, y_train, X_val, y_val, num_epochs=10, batch_size=128, learning_rate=0.1, momentum=0.9):
input_shape = X_train.shape[1:]
net = build_model(input_shape)
X = T.tensor4('X')
y = T.ivector('y')
output = lasagne.layers.get_output(net['fc'], X, deterministic=False)
loss = T.mean(lasagne.objectives.categorical_crossentropy(output, y))
accuracy = T.mean(T.eq(T.argmax(output, axis=1), y), dtype=theano.config.floatX)
params = lasagne.layers.get_all_params(net['fc'], trainable=True)
updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=learning_rate, momentum=momentum)
train_fn = theano.function([X, y], [loss, accuracy], updates=updates)
val_fn = theano.function([X, y], [loss, accuracy])
num_batches_train = X_train.shape[0] // batch_size
num_batches_val = X_val.shape[0] // batch_size
for epoch in range(num_epochs):
train_loss = 0
train_acc = 0
val_loss = 0
val_acc = 0
for i in range(num_batches_train):
start_idx = i * batch_size
end_idx = (i + 1) * batch_size
batch_X = X_train[start_idx:end_idx]
batch_y = y_train[start_idx:end_idx]
batch_loss, batch_acc = train_fn(batch_X, batch_y)
train_loss += batch_loss
train_acc += batch_acc
for i in range(num_batches_val):
start_idx = i * batch_size
end_idx = (i + 1) * batch_size
batch_X = X_val[start_idx:end_idx]
batch_y = y_val[start_idx:end_idx]
batch_loss, batch_acc = val_fn(batch_X, batch_y)
val_loss += batch_loss
val_acc += batch_acc
train_loss /= num_batches_train
train_acc /= num_batches_train
val_loss /= num_batches_val
val_acc /= num_batches_val
print("Epoch %d - Train loss: %.3f, Train acc: %.3f, Val loss: %.3f, Val acc: %.3f" % (epoch+1, train_loss, train_acc, val_loss, val_acc))
```
现在,我们可以使用这个函数来训练我们的ResNet模型:
``` python
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(-1, 1, 28, 28).astype(np.float32)
X_test = X_test.reshape(-1, 1, 28, 28).astype(np.float32)
X_train /= 255
X_test /= 255
y_train = y_train.astype(np.int32)
y_test = y_test.astype(np.int32)
train(X_train, y_train, X_test, y_test)
```
这个模型的训练过程比较耗时,但是会得到一个非常好的结果。
阅读全文