小卡有 tt 次询问,每次给你一个数字 xx,问有多少个比 xx 小的非负整数 yy,使得 x\oplus yx⊕y 是质数,其中 \oplus⊕ 表示按位异或。

时间: 2023-05-04 18:01:19 浏览: 148
题目是说小卡需要回答一个问题,每次给你一个数字 xx,问有多少个比 xx 小的非负整数 yy,满足 x⊕yxy⊕y 是质数,其中 ⊕ 表示按位异或。 解题思路: 对于一个数 xx,如果对所有比它小的非负整数 yy,都有 x⊕yxy⊕y 不是质数,那么 xx 就是符合条件的数。 可以根据异或的性质,得到 x⊕yxy⊕y=x+y+x⊕y=x+y+(x xor y)。 因此,可以枚举 x 和 y,计算 x+y+(x xor y) 是否是质数。如果有一个 x+y+(x xor y) 是质数,那么 xx 就不符合条件。如果所有 x+y+(x xor y) 都不是质数,那么 xx 就是符合条件的数。 注意到 xx 的范围不大,只有 $10^5$,因此可以先列出所有的素数,然后对于每个 xx,枚举所有小于它的 yy,判断 x+y+(x xor y) 是否在素数列表中即可。 参考代码:
相关问题

Alice是一名网络安全技术人员。这天她得到一串加密过的序列x1,x2,...,xnx_1,x_2,...,x_nx1​,x2​,...,xn​。并且她知道,从原序列y加密成新序列x的加密方式是xi=yi⊕ax_i = y_i\oplus axi​=yi​⊕a,且原序列所有数的和为S。 她想请你帮忙破解这个加密序列,你需要找到一个非负的最小的a使得 xi=yi⊕ax_i = y_i\oplus axi​=yi​⊕a 且 ∑i=1nyi=S\sum_{i=1}^{n} y_i = S∑i=1n​yi​=S。⊕\oplus⊕代表二进制按位异或运算。

这道题可以使用异或性质和数学方法来解决。 首先,我们知道异或运算的性质:a ⊕ a = 0,a ⊕ 0 = a,a ⊕ b = b ⊕ a,a ⊕ b ⊕ c = a ⊕ (b ⊕ c)。 因此,如果我们将原序列和新序列都异或一遍,得到的结果就是: S ⊕ (a ⊕ S) ⊕ (a * x1) ⊕ (a * x2) ⊕ ... ⊕ (a * xn) = S ⊕ (a ⊕ a) ⊕ (a * x1) ⊕ (a * x2) ⊕ ... ⊕ (a * xn) = S ⊕ (a * x1) ⊕ (a * x2) ⊕ ... ⊕ (a * xn) = (y1 ⊕ a) ⊕ (y2 ⊕ a) ⊕ ... ⊕ (yn ⊕ a) = y1 ⊕ y2 ⊕ ... ⊕ yn ⊕ (a ⊕ a ⊕ ... ⊕ a) = y1 ⊕ y2 ⊕ ... ⊕ yn 由于我们已经知道了原序列所有数的和为S,因此我们可以计算出y1 ⊕ y2 ⊕ ... ⊕ yn的值,设为T。 那么,我们只需要找到一个最小的非负整数a,使得T ⊕ (a * x1) ⊕ (a * x2) ⊕ ... ⊕ (a * xn) = 0。 这个问题可以转化成求一个线性同余方程T ≡ a * (x1 ⊕ x2 ⊕ ... ⊕ xn) (mod 2),然后解出a的值。 因为异或运算满足结合律和交换律,所以x1 ⊕ x2 ⊕ ... ⊕ xn的值可以预处理出来,设为B。 如果B等于0,那么a可以是任意非负整数。 如果B不等于0,那么方程T ≡ a * B (mod 2)只有两种情况:有解和无解。 如果有解,那么方程的解为a = T / B。 如果无解,那么说明原序列和新序列的异或和不相等,无法破解。 综上所述,我们可以按照上述方法求解出a的值。

题目描述 给出一个正整数数组A,牛牛想知道其中有多少子数组满足:里面所有数字的乘积等于里面所有数字的异或。 一个数组的子数组指数组中非空的一段连续数字。请用go语言写出时间复杂度较低的答案

### 回答1: 思路: 考虑对于任意的区间[l,r],假设这个区间满足条件,则有: $A_l \oplus A_{l+1} \oplus ... \oplus A_r = A_l \times A_{l+1} \times ... \times A_r$ 两边同时取对数得到:$\log_2(A_l) \oplus \log_2(A_{l+1}) \oplus ... \oplus \log_2(A_r) = \log_2(A_l) + \log_2(A_{l+1}) + ... + \log_2(A_r)$ 因为异或运算的性质,所以可以得到:$\log_2(A_l) \oplus \log_2(A_{l+1}) \oplus ... \oplus \log_2(A_r) = \log_2(A_l) \oplus (\log_2(A_l) \oplus \log_2(A_{l+1})) \oplus ... \oplus (\log_2(A_{r-1}) \oplus \log_2(A_r))$ 然后就可以用前缀异或和的思想来计算了。 代码实现: ### 回答2: 假设数组A的长度为n,我们可以通过计算每个位置的前缀异或值和前缀乘积来解决这个问题,时间复杂度为O(n)。 首先,我们创建两个辅助数组prefixXor和prefixMul,长度都为n。 prefixXor[i]表示数组A[0]到A[i]的异或值,prefixMul[i]表示数组A[0]到A[i]的乘积。 接下来,我们遍历数组A,计算prefixXor和prefixMul的值。 如果A[i]为0,那么prefixXor[i]和prefixMul[i]都为0。 否则,prefixXor[i] = prefixXor[i-1] ^ A[i],prefixMul[i] = prefixMul[i-1] * A[i]。 然后,我们再次遍历数组A,计算子数组满足条件的个数。 对于每个位置i,我们需要找到在位置i之前的某个位置j(0 ≤ j < i),使得prefixXor[i] = prefixMul[i]。 我们可以使用一个哈希表来记录每个前缀异或值出现的次数。 对于每个位置i,我们首先判断prefixXor[i]是否等于prefixMul[i],如果是,则满足条件的子数组个数加一。 然后,我们检查哈希表中是否存在prefixXor[i],如果存在,则将哈希表中prefixXor[i]的值加到满足条件的子数组个数上。 最后,将prefixXor[i]的出现次数加一。 最终,遍历完成后,满足条件的子数组个数就是答案。 以下是Go语言的实现代码: ```go func numOfSubarrays(A []int) int { n := len(A) prefixXor := make([]int, n) prefixMul := make([]int, n) prefixXor[0] = A[0] prefixMul[0] = A[0] xorCount := make(map[int]int) xorCount[0] = 1 res := 0 if A[0] == 0 { res++ } for i := 1; i < n; i++ { if A[i] == 0 { res++ } else { prefixXor[i] = prefixXor[i-1] ^ A[i] prefixMul[i] = prefixMul[i-1] * A[i] } res += xorCount[prefixXor[i]] xorCount[prefixXor[i]]++ } return res } ``` 上述代码中,我们使用了一个哈希表xorCount来记录前缀异或值的出现次数,以便快速查找满足条件的子数组个数。整个算法的时间复杂度为O(n),空间复杂度为O(n)。 ### 回答3: 题目要求找出正整数数组中有多少个子数组满足乘积等于异或。我们可以通过遍历数组的每个元素来求解。 假设数组A的长度为n,我们可以使用两个变量count和product来记录满足条件的子数组数量和对应的乘积。首先,将count和product初始化为0,遍历数组A中的每个元素num,对于每个元素,更新count和product的值。 对于当前元素num,如果num等于0,则满足条件的子数组数量需要加上count*(count+1)/2,然后将count重新设为0并将product设为1。这是因为对于元素为0的子数组,其乘积为0,和为0,所以需要将之前的子数组数量加上,并重新开始计数。 否则,如果num不等于0,则将product乘上num,然后判断product是否等于num的异或值。如果相等,则满足条件的子数组数量需要加上count的值。这是因为对于满足乘积等于异或的子数组,其中的元素可以随意排列,只要元素的个数(count)相同,就可以构成不同的子数组。 最后返回count的值即为满足条件的子数组数量。 下面是用Go语言实现的代码: ```go package main import "fmt" func main() { A := []int{1, 2, 3} count := 0 product := 1 for _, num := range A { if num == 0 { count += count * (count + 1) / 2 count = 0 product = 1 } else { product *= num if product == num^(count+1) { count++ } } } count += count * (count + 1) / 2 fmt.Println(count) } ``` 这段代码的时间复杂度为O(n),其中n为数组A的长度。通过遍历数组A中的每个元素,我们可以找出满足条件的子数组数量,并输出结果。
阅读全文

相关推荐

最新推荐

recommend-type

Multisim数字电路实验:实验二--组合逻辑电路分析.doc

在实验中,使用了74LS00芯片,这是一个四输入的与非门。通过改变输入A和B的电平,观察输出S(和)和C(进位)的变化,从而确定半加器的逻辑表达式和真值表。半加器的逻辑表达式为: \[ S = A \wedge B, C = A \oplus...
recommend-type

阿里巴巴大数据智能技术.pdf

它提供了一个协同工作环境,使得数据的整个生命周期,从采集、集成、规划、建模到服务,都能在一个平台上完成,提高了团队协作效率。 数据流失和数据孤岛是大数据领域常见的挑战。Dataphin通过统一数据资产管理和...
recommend-type

数字电路 全加器 全加器

全加器是数字电路中的一个重要组成部分,主要用于进行二进制的加法运算。与半加器不同,全加器不仅考虑本位的两个输入信号(An 和 Bn),还考虑了低位进位信号(Cn-1)。这种设计使得全加器能够处理带有进位的加法...
recommend-type

MATLAB实现小波阈值去噪:Visushrink硬软算法对比

资源摘要信息:"本资源提供了一套基于MATLAB实现的小波阈值去噪算法代码。用户可以通过运行主文件"project.m"来执行该去噪算法,并观察到对一张256x256像素的黑白“莱娜”图片进行去噪的全过程。此算法包括了添加AWGN(加性高斯白噪声)的过程,并展示了通过Visushrink硬阈值和软阈值方法对图像去噪的对比结果。此外,该实现还包括了对图像信噪比(SNR)的计算以及将噪声图像和去噪后的图像的打印输出。Visushrink算法的参考代码由M.Kiran Kumar提供,可以在Mathworks网站上找到。去噪过程中涉及到的Lipschitz指数计算,是基于Venkatakrishnan等人的研究,使用小波变换模量极大值(WTMM)的方法来测量。" 知识点详细说明: 1. MATLAB环境使用:本代码要求用户在MATLAB环境下运行。MATLAB是一种高性能的数值计算和可视化环境,广泛应用于工程计算、算法开发和数据分析等领域。 2. 小波阈值去噪:小波去噪是信号处理中的一个技术,用于从信号中去除噪声。该技术利用小波变换将信号分解到不同尺度的子带,然后根据信号与噪声在小波域中的特性差异,通过设置阈值来消除或减少噪声成分。 3. Visushrink算法:Visushrink算法是一种小波阈值去噪方法,由Donoho和Johnstone提出。该算法的硬阈值和软阈值是两种不同的阈值处理策略,硬阈值会将小波系数小于阈值的部分置零,而软阈值则会将这部分系数缩减到零。硬阈值去噪后的信号可能有更多震荡,而软阈值去噪后的信号更为平滑。 4. AWGN(加性高斯白噪声)添加:在模拟真实信号处理场景时,通常需要对原始信号添加噪声。AWGN是一种常见且广泛使用的噪声模型,它假设噪声是均值为零、方差为N0/2的高斯分布,并且与信号不相关。 5. 图像处理:该实现包含了图像处理的相关知识,包括图像的读取、显示和噪声添加。此外,还涉及了图像去噪前后视觉效果的对比展示。 6. 信噪比(SNR)计算:信噪比是衡量信号质量的一个重要指标,反映了信号中有效信息与噪声的比例。在图像去噪的过程中,通常会计算并比较去噪前后图像的SNR值,以评估去噪效果。 7. Lipschitz指数计算:Lipschitz指数是衡量信号局部变化复杂性的一个量度,通常用于描述信号在某个尺度下的变化规律。在小波去噪过程中,Lipschitz指数可用于确定是否保留某个小波系数,因为它与信号的奇异性相关联。 8. WTMM(小波变换模量极大值):小波变换模量极大值方法是一种小波分析技术,用于检测信号中的奇异点或边缘。该技术通过寻找小波系数模量极大值的变化来推断信号的局部特征。 9. 系统开源:该资源被标记为“系统开源”,意味着该MATLAB代码及其相关文件是可以公开访问和自由使用的。开源资源为研究人员和开发者提供了学习和实验的机会,有助于知识共享和技术发展。 资源的文件结构包括"Wavelet-Based-Denoising-MATLAB-Code-master",表明用户获取的是一套完整的项目文件夹,其中包含了执行小波去噪算法所需的所有相关文件和脚本。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征

![【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征](https://img-blog.csdnimg.cn/img_convert/21b6bb90fa40d2020de35150fc359908.png) # 1. 交互特征在分类问题中的重要性 在当今的机器学习领域,分类问题一直占据着核心地位。理解并有效利用数据中的交互特征对于提高分类模型的性能至关重要。本章将介绍交互特征在分类问题中的基础重要性,以及为什么它们在现代数据科学中变得越来越不可或缺。 ## 1.1 交互特征在模型性能中的作用 交互特征能够捕捉到数据中的非线性关系,这对于模型理解和预测复杂模式至关重要。例如
recommend-type

c语言从链式队列 中获取头部元素并返回其状态的函数怎么写

在 C 语言中,如果你有一个链式队列的数据结构,通常它会包含两个指针,一个指向队首(front),一个指向队尾(rear)。以下是一个简单的链式队列头部元素获取函数的示例,假设 `Queue` 是你的链式队列结构体,并且已经包含了必要的成员变量: ```c typedef struct Queue { void* data; // 存储数据的指针 struct Queue* front; // 队首指针 struct Queue* rear; // 队尾指针 } Queue; // 获取头部元素并检查是否为空(如果队列为空,返回 NULL 或适当错误值) void*
recommend-type

易语言实现画板图像缩放功能教程

资源摘要信息:"易语言是一种基于中文的编程语言,主要面向中文用户,其特点是使用中文关键词和语法结构,使得中文使用者更容易理解和编写程序。易语言画板图像缩放源码是易语言编写的程序代码,用于实现图形用户界面中的画板组件上图像的缩放功能。通过这个源码,用户可以调整画板上图像的大小,从而满足不同的显示需求。它可能涉及到的图形处理技术包括图像的获取、缩放算法的实现以及图像的重新绘制等。缩放算法通常可以分为两大类:高质量算法和快速算法。高质量算法如双线性插值和双三次插值,这些算法在图像缩放时能够保持图像的清晰度和细节。快速算法如最近邻插值和快速放大技术,这些方法在处理速度上更快,但可能会牺牲一些图像质量。根据描述和标签,可以推测该源码主要面向图形图像处理爱好者或专业人员,目的是提供一种方便易用的方法来实现图像缩放功能。由于源码文件名称为'画板图像缩放.e',可以推断该文件是一个易语言项目文件,其中包含画板组件和图像处理的相关编程代码。" 易语言作为一种编程语言,其核心特点包括: 1. 中文编程:使用中文作为编程关键字,降低了学习编程的门槛,使得不熟悉英文的用户也能够编写程序。 2. 面向对象:易语言支持面向对象编程(OOP),这是一种编程范式,它使用对象及其接口来设计程序,以提高软件的重用性和模块化。 3. 组件丰富:易语言提供了丰富的组件库,用户可以通过拖放的方式快速搭建图形用户界面。 4. 简单易学:由于语法简单直观,易语言非常适合初学者学习,同时也能够满足专业人士对快速开发的需求。 5. 开发环境:易语言提供了集成开发环境(IDE),其中包含了代码编辑器、调试器以及一系列辅助开发工具。 6. 跨平台:易语言支持在多个操作系统平台编译和运行程序,如Windows、Linux等。 7. 社区支持:易语言有着庞大的用户和开发社区,社区中有很多共享的资源和代码库,便于用户学习和解决编程中遇到的问题。 在处理图形图像方面,易语言能够: 1. 图像文件读写:支持常见的图像文件格式如JPEG、PNG、BMP等的读取和保存。 2. 图像处理功能:包括图像缩放、旋转、裁剪、颜色调整、滤镜效果等基本图像处理操作。 3. 图形绘制:易语言提供了丰富的绘图功能,包括直线、矩形、圆形、多边形等基本图形的绘制,以及文字的输出。 4. 图像缩放算法:易语言实现的画板图像缩放功能中可能使用了特定的缩放算法来优化图像的显示效果和性能。 易语言画板图像缩放源码的实现可能涉及到以下几个方面: 1. 获取画板上的图像:首先需要从画板组件中获取到用户当前绘制或已经存在的图像数据。 2. 图像缩放算法的应用:根据用户的需求,应用适当的图像缩放算法对获取的图像数据进行处理。 3. 图像重新绘制:处理后的图像数据需要重新绘制到画板上,以实现缩放后的效果。 4. 用户交互:提供用户界面,让用户能够通过按钮、滑块等控件选择缩放比例和模式,以及触发缩放操作。 5. 性能优化:为了确保图像缩放操作流畅,需要考虑代码的执行效率和资源的合理利用。 在易语言社区中,用户可以根据自己的需求修改和扩展画板图像缩放源码,或者根据提供的API进一步开发更多高级图像处理功能,从而丰富软件的功能和用户体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【交互特征:优化与调试的艺术】:实战技巧,提升回归模型与分类模型的性能

![【交互特征:优化与调试的艺术】:实战技巧,提升回归模型与分类模型的性能](https://ask.qcloudimg.com/http-save/yehe-8871522/e113209d8f0e317542ca15c510d91a73.png) # 1. 回归模型与分类模型的理论基础 ## 1.1 回归模型与分类模型的区别 回归模型和分类模型是机器学习中最基础的两类监督学习算法,它们在处理问题的本质上存在显著不同。 - **分类模型**:旨在通过数据集中的已知类别(标签)来预测新数据的类别。例如,邮件过滤器将邮件分类为垃圾邮件或正常邮件,或者根据用户的点击行为预测用户是否会购买某个