数据集文件名为data.xls,写一个基于pytorch的预测,BCDE列为输入的四个变量,F到BD列为对应的预测数据,模型定义为五个隐藏层每层一百个神经元,每一行都有详细注释
时间: 2023-02-08 19:03:47 浏览: 36
首先,我们需要导入pytorch相关的库。
```
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
```
然后我们需要读取数据集文件data.xls。
```
df = pd.read_excel('data.xls')
```
接下来,我们要定义模型。这里我们定义一个5层的隐藏层,每层有100个神经元的网络。
```
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(4, 100)
self.fc2 = nn.Linear(100, 100)
self.fc3 = nn.Linear(100, 100)
self.fc4 = nn.Linear(100, 100)
self.fc5 = nn.Linear(100, 100)
self.fc6 = nn.Linear(100, 100)
self.fc7 = nn.Linear(100, 2)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
x = self.fc4(x)
x = self.fc5(x)
x = self.fc6(x)
x = self.fc7(x)
return x
model = Net()
```
接下来我们要设置训练的参数。
```
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
```
然后我们开始训练模型。
```
# 训练模型
for epoch in range(2): # 训练两个epoch
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 获取输入和标签
inputs, labels = data
# 梯度清零
optimizer.zero_grad()
# forward + backward
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
# 更新参数
optimizer.step()
# 输出log信
相关推荐

















