python实现图像匹配
时间: 2023-10-04 16:05:54 浏览: 78
基于python flask 实现图像相似性匹配系统 毕业设计附完整代码+数据.zip
实现图像匹配可以使用OpenCV库,以下是一个简单的例子:
1. 导入OpenCV库
```python
import cv2
```
2. 读取图像
```python
img1 = cv2.imread('image1.jpg', 0)
img2 = cv2.imread('image2.jpg', 0)
```
3. 初始化SIFT检测器
```python
sift = cv2.xfeatures2d.SIFT_create()
```
4. 检测关键点和描述符
```python
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
```
5. 初始化FLANN匹配器
```python
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
```
6. 进行匹配
```python
matches = flann.knnMatch(des1, des2, k=2)
```
7. 选择最佳匹配
```python
good_matches = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good_matches.append(m)
```
8. 显示匹配结果
```python
img_matches = cv2.drawMatches(img1, kp1, img2, kp2, good_matches, None, flags=2)
cv2.imshow('Matches', img_matches)
cv2.waitKey(0)
```
完整代码:
```python
import cv2
img1 = cv2.imread('image1.jpg', 0)
img2 = cv2.imread('image2.jpg', 0)
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
good_matches = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good_matches.append(m)
img_matches = cv2.drawMatches(img1, kp1, img2, kp2, good_matches, None, flags=2)
cv2.imshow('Matches', img_matches)
cv2.waitKey(0)
```
阅读全文