深度学习中的学习率是什么
时间: 2023-12-24 20:32:13 浏览: 82
深度学习各类学习率调整策略示例代码
5星 · 资源好评率100%
在深度学习中,学习率是一个重要的超参数,它决定了模型在每次迭代中更新权重的程度。学习率控制了模型在梯度下降过程中参数更新的步长大小。如果学习率设置得过大,会导致模型在优化过程中跳过最优解;而如果学习率设置得过小,会导致模型收敛速度很慢。
选择合适的学习率是一个关键的任务,常见的策略包括固定学习率、衰减学习率和自适应学习率。固定学习率是指在整个训练过程中保持不变的学习率;衰减学习率是指随着训练的进行逐渐降低学习率;自适应学习率则是根据当前模型的状态自动调整学习率。
选择合适的学习率需要根据具体问题和数据集进行调整和优化,一般需要进行实验和验证来找到最佳的学习率值。
阅读全文