上面python的代码是什么

时间: 2024-05-18 19:15:54 浏览: 9
抱歉,我的回答有误,上面并没有给出Python代码。下面是一个Python实现的示例代码,可以用遗传算法求解f(x,y)=1+xsin(4πx)-ysin(4πy)+sin6√x²+y²/6√x²+y²+10的最大值: ```python import random import math # 定义目标函数 def f(x, y): return 1 + x * math.sin(4 * math.pi * x) - y * math.sin(4 * math.pi * y) + \ math.sin(6 * math.sqrt(x * x + y * y)) / (6 * math.sqrt(x * x + y * y) + 10) # 定义个体编码 def encode(x): return '{:016b}'.format(int(x * 1000)) # 定义个体解码 def decode(s): return int(s, 2) / 1000 # 初始化种群 def init_population(size): return [(random.uniform(-1, 1), random.uniform(-1, 1)) for i in range(size)] # 计算适应度 def fitness(individual): x, y = individual return -f(x, y) # 选择操作 def selection(population): fitnesses = [fitness(individual) for individual in population] total_fitness = sum(fitnesses) probabilities = [fitness / total_fitness for fitness in fitnesses] return random.choices(population, weights=probabilities, k=2) # 交叉操作 def crossover(individual1, individual2, crossover_rate): x1, y1 = individual1 x2, y2 = individual2 if random.random() < crossover_rate: x1_bits, y1_bits = encode(x1), encode(y1) x2_bits, y2_bits = encode(x2), encode(y2) crossover_point = random.randint(1, 15) offspring1 = (decode(x1_bits[:crossover_point] + y2_bits[crossover_point:]), decode(y1_bits[:crossover_point] + x2_bits[crossover_point:])) offspring2 = (decode(x2_bits[:crossover_point] + y1_bits[crossover_point:]), decode(y2_bits[:crossover_point] + x1_bits[crossover_point:])) return offspring1, offspring2 else: return individual1, individual2 # 变异操作 def mutation(individual, mutation_rate): x, y = individual x_bits, y_bits = encode(x), encode(y) mutated_x_bits = ''.join(['0' if bit == '1' else '1' if bit == '0' else bit for bit in x_bits]) mutated_y_bits = ''.join(['0' if bit == '1' else '1' if bit == '0' else bit for bit in y_bits]) mutated_x = decode(mutated_x_bits) mutated_y = decode(mutated_y_bits) if random.random() < mutation_rate: return (mutated_x, y) elif random.random() < mutation_rate: return (x, mutated_y) else: return individual # 更新种群 def evolve(population, selection_size, crossover_rate, mutation_rate): selected = [selection(population) for i in range(selection_size)] offspring = [crossover(*parents, crossover_rate) for parents in selected] mutated = [mutation(individual, mutation_rate) for individual in offspring] new_population = [mutation(individual, mutation_rate) for individual in population] new_population.extend(mutated) fitnesses = [fitness(individual) for individual in new_population] ranked_population = sorted(zip(new_population, fitnesses), key=lambda x: x[1], reverse=True) return [individual for individual, fitness in ranked_population][:len(population)] # 定义遗传算法函数 def genetic_algorithm(population_size, selection_size, crossover_rate, mutation_rate, generations): population = init_population(population_size) for i in range(generations): population = evolve(population, selection_size, crossover_rate, mutation_rate) best_individual = max(population, key=fitness) print('Generation', i+1, ': best individual =', best_individual, ', best fitness =', -fitness(best_individual)) return max(population, key=fitness) # 运行遗传算法 best_individual = genetic_algorithm(population_size=100, selection_size=50, crossover_rate=0.8, mutation_rate=0.01, generations=100) print('Best individual found:', best_individual) print('Best fitness found:', -fitness(best_individual)) ``` 这段代码使用了二进制编码来表示个体,其中每个变量x和y都用16位二进制数表示,前8位表示整数部分,后8位表示小数部分。在遗传算法中,使用了轮盘赌选择算法、单点交叉和单点变异等操作。在每一代种群中,都可以输出最好的个体和最好的适应度。

相关推荐

最新推荐

recommend-type

Python实现控制台输入密码的方法

在Python编程中,控制台输入密码是一个常见的需求,特别是在涉及到用户认证或安全性较高的场景下。在不同的情况下,Python提供了多种实现方法,每种方法都有其优缺点。下面将详细介绍三种常见的控制台输入密码的方法...
recommend-type

如何在腾讯云服务器上部署自己的Python代码.docx

用于说明如何短期免费使用腾讯云服务器资源,来运行自己的python3.7+pytorch代码,为疫情期间无法返校使用服务器的学生提供低成本的资源帮助。
recommend-type

python-opencv获取二值图像轮廓及中心点坐标的代码

注意,这里我们只处理了第一个(可能也是唯一的一个)轮廓,因为原代码有一个条件检查`if len(contours) != 1:`,这意味着如果找到的轮廓数量不是1,程序将不会继续执行后续步骤。这可能取决于具体的应用场景,例如...
recommend-type

python遍历文件夹下所有excel文件

在上面的代码中,`collect_excel_files`函数遍历给定目录下的所有文件,如果文件名以`.xlsx`结尾,就调用`process_excel_file`函数处理该文件。`process_excel_file`函数通过`xlrd.open_workbook`打开Excel文件,并...
recommend-type

python操作openpyxl导出Excel 设置单元格格式及合并处理代码实例

通过以上的代码示例,我们了解了如何使用`openpyxl`在Python中创建Excel文件、设置单元格格式以及进行单元格合并。这些技巧在处理大量数据时非常有用,能够帮助我们更好地组织和呈现信息。在实际应用中,可以结合...
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。