keras.callbacks.modelcheckpoint
时间: 2023-04-27 08:00:27 浏览: 110
keras.callbacks.ModelCheckpoint是Keras框架中一个回调函数,用于在训练过程中不断保存模型的最佳权重。这样,当训练过程中出现问题(如终止)时,您可以加载保存的最佳权重,而不是从头开始重新训练模型。
相关问题
keras.callbacks.ModelCheckpoint
The `ModelCheckpoint` callback in Keras is used to save the model after every epoch or a certain number of epochs during training. This callback is useful when training deep learning models that can take several hours or days to complete. By saving the model at regular intervals, we can resume training from where we left off in case of an unexpected interruption or failure.
The `ModelCheckpoint` callback takes several arguments, including:
- `filepath`: the path to save the model file.
- `monitor`: the metric to monitor for saving the best model.
- `save_best_only`: whether to save only the best model based on the monitored metric.
- `save_weights_only`: whether to save only the model weights instead of the entire model architecture.
- `mode`: whether to maximize or minimize the monitored metric.
- `verbose`: the verbosity mode.
Here's an example of using the `ModelCheckpoint` callback to save the best model based on validation loss:
```python
from tensorflow.keras.callbacks import ModelCheckpoint
checkpoint = ModelCheckpoint(filepath='best_model.h5',
monitor='val_loss',
save_best_only=True,
mode='min',
verbose=1)
model.fit(X_train, y_train,
batch_size=32,
epochs=10,
validation_data=(X_val, y_val),
callbacks=[checkpoint])
```
In this example, the `ModelCheckpoint` callback will save the best model based on validation loss in the file `best_model.h5`. The `verbose` argument is set to 1, which means that the callback will print a message when a new best model is saved.
tf.keras.callbacks.modelcheckpoint
tf.keras.callbacks.ModelCheckpoint 是 TensorFlow 中 keras 框架的一个回调函数,用于在训练过程中保存模型的权重。它可以在训练过程中定期保存模型的权重,并在训练结束后保存最优权重。使用该回调函数可以方便地继续训练模型或加载之前训练过的模型。
阅读全文