import keras.backend as K smooth = 1. def dice_coef(y_true, y_pred): y_true_f = K.flatten(y_true>0.5) y_pred_f = K.flatten(y_pred>0.5) intersection = K.sum(y_true_f * y_pred_f) return 1 - (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
时间: 2023-06-25 12:03:50 浏览: 149
这是一个使用Keras后端实现的Dice Coefficient损失函数。Dice Coefficient是一种衡量两个集合相似度的指标,通常用于图像分割任务中。这个函数返回的是1减去Dice Coefficient值,因为在Keras中通常是最小化损失函数。
具体来说,该函数首先将真实标签和预测标签展平,然后计算它们的交集,并将其除以它们的并集加上一个平滑项。最后将1减去这个值,得到Dice Coefficient损失函数的值。
相关问题
def dice_coef_fun(smooth=1): def dice_coef(y_true, y_pred): #求得每个sample的每个类的dice intersection = K.sum(y_true * y_pred, axis=(1,2,3)) union = K.sum(y_true, axis=(1,2,3)) + K.sum(y_pred, axis=(1,2,3)) sample_dices=(2. * intersection + smooth) / (union + smooth) #一维数组 为各个类别的dice #求得每个类的dice dices=K.mean(sample_dices,axis=0) return K.mean(dices) #所有类别dice求平均的dice return dice_coef def dice_coef_loss_fun(smooth=0): def dice_coef_loss(y_true,y_pred): return 1-1-dice_coef_fun(smooth=smooth)(y_true=y_true,y_pred=y_pred) return dice_coef_loss
这段代码定义了两个函数,`dice_coef_fun` 和 `dice_coef_loss_fun`,用于计算 Dice Coefficient 和 Dice Coefficient Loss。
首先是 `dice_coef_fun` 函数,它接受一个平滑因子 `smooth` 的默认值为 1。在函数内部,首先计算了预测值 `y_pred` 和真实标签 `y_true` 的交集,并对其进行求和操作,轴为 (1,2,3)。然后,计算了真实标签和预测值的总和,并同样进行求和操作。最后,根据 Dice Coefficient 的公式,将交集乘以 2 并加上平滑因子,再除以总和与平滑因子之和,得到每个类别的 Dice Coefficient。最终,将所有类别的 Dice Coefficient 求平均,作为函数的返回值。
接下来是 `dice_coef_loss_fun` 函数,它接受一个平滑因子 `smooth` 的默认值为 0。在函数内部,调用了 `dice_coef_fun` 函数,并将 `y_true` 和 `y_pred` 作为参数传入。然后,将 `dice_coef_fun` 的返回值与 1 相减,并再次减去 1,得到 Dice Coefficient Loss 的值,作为函数的返回值。
这段代码使用了 Keras(或者 TensorFlow)的张量操作。如果你有关于这些函数的任何问题,请继续提问。
import os import random import numpy as np import cv2 import keras from create_unet import create_model img_path = 'data_enh/img' mask_path = 'data_enh/mask' # 训练集与测试集的切分 img_files = np.array(os.listdir(img_path)) data_num = len(img_files) train_num = int(data_num * 0.8) train_ind = random.sample(range(data_num), train_num) test_ind = list(set(range(data_num)) - set(train_ind)) train_ind = np.array(train_ind) test_ind = np.array(test_ind) train_img = img_files[train_ind] # 训练的数据 test_img = img_files[test_ind] # 测试的数据 def get_mask_name(img_name): mask = [] for i in img_name: mask_name = i.replace('.jpg', '.png') mask.append(mask_name) return np.array(mask) train_mask = get_mask_name(train_img) test_msak = get_mask_name(test_img) def generator(img, mask, batch_size): num = len(img) while True: IMG = [] MASK = [] for i in range(batch_size): index = np.random.choice(num) img_name = img[index] mask_name = mask[index] img_temp = os.path.join(img_path, img_name) mask_temp = os.path.join(mask_path, mask_name) temp_img = cv2.imread(img_temp) temp_mask = cv2.imread(mask_temp, 0)/255 temp_mask = np.reshape(temp_mask, [256, 256, 1]) IMG.append(temp_img) MASK.append(temp_mask) IMG = np.array(IMG) MASK = np.array(MASK) yield IMG, MASK # train_data = generator(train_img, train_mask, 32) # temp_data = train_data.__next__() # 计算dice系数 def dice_coef(y_true, y_pred): y_true_f = keras.backend.flatten(y_true) y_pred_f = keras.backend.flatten(y_pred) intersection = keras.backend.sum(y_true_f * y_pred_f) area_true = keras.backend.sum(y_true_f * y_true_f) area_pred = keras.backend.sum(y_pred_f * y_pred_f) dice = (2 * intersection + 1)/(area_true + area_pred + 1) return dice # 自定义损失函数,dice_loss def dice_coef_loss(y_true, y_pred): return 1 - dice_coef(y_true, y_pred) # 模型的创建 model = create_model() # 模型的编译 model.compile(optimizer='Adam', loss=dice_coef_loss, metrics=[dice_coef]) # 模型的训练 history = model.fit_generator(generator(train_img, train_mask, 4), steps_per_epoch=100, epochs=10, validation_data=generator(test_img, test_msak, 4), validation_steps=4 ) # 模型的保存 model.save('unet_model.h5') # 模型的读取 model = keras.models.load_model('unet_model.h5', custom_objects={'dice_coef_loss': dice_coef_loss, 'dice_coef': dice_coef}) # 获取测试数据 test_generator = generator(test_img, test_msak, 32) img, mask = test_generator.__next__() # 模型的测试 model.evaluate(img, mask) # [0.11458712816238403, 0.885412871837616] 94%
上面这段代码是在导入一些库。它导入了 OS 库,Random 库,NumPy 库,CV2 库,Keras 库,以及一个叫做 Create_unet 的自定义模块。它还定义了两个字符串变量:img_path 和 mask_path,分别存储了图像数据和掩码数据的路径。
阅读全文