import keras.backend as K smooth = 1. def dice_coef(y_true, y_pred): y_true_f = K.flatten(y_true>0.5) y_pred_f = K.flatten(y_pred>0.5) intersection = K.sum(y_true_f * y_pred_f) return 1 - (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)

时间: 2023-06-25 12:03:50 浏览: 149
这是一个使用Keras后端实现的Dice Coefficient损失函数。Dice Coefficient是一种衡量两个集合相似度的指标,通常用于图像分割任务中。这个函数返回的是1减去Dice Coefficient值,因为在Keras中通常是最小化损失函数。 具体来说,该函数首先将真实标签和预测标签展平,然后计算它们的交集,并将其除以它们的并集加上一个平滑项。最后将1减去这个值,得到Dice Coefficient损失函数的值。
相关问题

def dice_coef_fun(smooth=1): def dice_coef(y_true, y_pred): #求得每个sample的每个类的dice intersection = K.sum(y_true * y_pred, axis=(1,2,3)) union = K.sum(y_true, axis=(1,2,3)) + K.sum(y_pred, axis=(1,2,3)) sample_dices=(2. * intersection + smooth) / (union + smooth) #一维数组 为各个类别的dice #求得每个类的dice dices=K.mean(sample_dices,axis=0) return K.mean(dices) #所有类别dice求平均的dice return dice_coef def dice_coef_loss_fun(smooth=0): def dice_coef_loss(y_true,y_pred): return 1-1-dice_coef_fun(smooth=smooth)(y_true=y_true,y_pred=y_pred) return dice_coef_loss

这段代码定义了两个函数,`dice_coef_fun` 和 `dice_coef_loss_fun`,用于计算 Dice Coefficient 和 Dice Coefficient Loss。 首先是 `dice_coef_fun` 函数,它接受一个平滑因子 `smooth` 的默认值为 1。在函数内部,首先计算了预测值 `y_pred` 和真实标签 `y_true` 的交集,并对其进行求和操作,轴为 (1,2,3)。然后,计算了真实标签和预测值的总和,并同样进行求和操作。最后,根据 Dice Coefficient 的公式,将交集乘以 2 并加上平滑因子,再除以总和与平滑因子之和,得到每个类别的 Dice Coefficient。最终,将所有类别的 Dice Coefficient 求平均,作为函数的返回值。 接下来是 `dice_coef_loss_fun` 函数,它接受一个平滑因子 `smooth` 的默认值为 0。在函数内部,调用了 `dice_coef_fun` 函数,并将 `y_true` 和 `y_pred` 作为参数传入。然后,将 `dice_coef_fun` 的返回值与 1 相减,并再次减去 1,得到 Dice Coefficient Loss 的值,作为函数的返回值。 这段代码使用了 Keras(或者 TensorFlow)的张量操作。如果你有关于这些函数的任何问题,请继续提问。

import os import random import numpy as np import cv2 import keras from create_unet import create_model img_path = 'data_enh/img' mask_path = 'data_enh/mask' # 训练集与测试集的切分 img_files = np.array(os.listdir(img_path)) data_num = len(img_files) train_num = int(data_num * 0.8) train_ind = random.sample(range(data_num), train_num) test_ind = list(set(range(data_num)) - set(train_ind)) train_ind = np.array(train_ind) test_ind = np.array(test_ind) train_img = img_files[train_ind] # 训练的数据 test_img = img_files[test_ind] # 测试的数据 def get_mask_name(img_name): mask = [] for i in img_name: mask_name = i.replace('.jpg', '.png') mask.append(mask_name) return np.array(mask) train_mask = get_mask_name(train_img) test_msak = get_mask_name(test_img) def generator(img, mask, batch_size): num = len(img) while True: IMG = [] MASK = [] for i in range(batch_size): index = np.random.choice(num) img_name = img[index] mask_name = mask[index] img_temp = os.path.join(img_path, img_name) mask_temp = os.path.join(mask_path, mask_name) temp_img = cv2.imread(img_temp) temp_mask = cv2.imread(mask_temp, 0)/255 temp_mask = np.reshape(temp_mask, [256, 256, 1]) IMG.append(temp_img) MASK.append(temp_mask) IMG = np.array(IMG) MASK = np.array(MASK) yield IMG, MASK # train_data = generator(train_img, train_mask, 32) # temp_data = train_data.__next__() # 计算dice系数 def dice_coef(y_true, y_pred): y_true_f = keras.backend.flatten(y_true) y_pred_f = keras.backend.flatten(y_pred) intersection = keras.backend.sum(y_true_f * y_pred_f) area_true = keras.backend.sum(y_true_f * y_true_f) area_pred = keras.backend.sum(y_pred_f * y_pred_f) dice = (2 * intersection + 1)/(area_true + area_pred + 1) return dice # 自定义损失函数,dice_loss def dice_coef_loss(y_true, y_pred): return 1 - dice_coef(y_true, y_pred) # 模型的创建 model = create_model() # 模型的编译 model.compile(optimizer='Adam', loss=dice_coef_loss, metrics=[dice_coef]) # 模型的训练 history = model.fit_generator(generator(train_img, train_mask, 4), steps_per_epoch=100, epochs=10, validation_data=generator(test_img, test_msak, 4), validation_steps=4 ) # 模型的保存 model.save('unet_model.h5') # 模型的读取 model = keras.models.load_model('unet_model.h5', custom_objects={'dice_coef_loss': dice_coef_loss, 'dice_coef': dice_coef}) # 获取测试数据 test_generator = generator(test_img, test_msak, 32) img, mask = test_generator.__next__() # 模型的测试 model.evaluate(img, mask) # [0.11458712816238403, 0.885412871837616] 94%

上面这段代码是在导入一些库。它导入了 OS 库,Random 库,NumPy 库,CV2 库,Keras 库,以及一个叫做 Create_unet 的自定义模块。它还定义了两个字符串变量:img_path 和 mask_path,分别存储了图像数据和掩码数据的路径。
阅读全文

相关推荐

解释以下这段代码:import tensorflow as tf gpus =tf.config.experimental.list_physical_devices(device_type='GPU') tf.config.experimental.set_virtual_device_configuration(gpus[0],[tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)]) #import scipy.io as sio import pickle import os,random import matplotlib.pyplot as plt #import scipy.stats from tensorflow import losses from tensorflow.keras import Model from tensorflow.keras import layers import matplotlib.pyplot as plt import tensorflow as tf import numpy as np #import scipy.io as sio #import scipy.stats import math import os import pdb from tensorflow import losses from model import ResNet18 from re_dataset_real import train_image1,train_label1,test_image1,test_label1,val_image1,val_label1 from re_dataset_imag import train_image2,train_label2,test_image2,test_label2,val_image2,val_label2 def phsical_loss(y_true, y_pred): y_true =tf.cast(y_true, y_pred.dtype) loss_real=tf.keras.losses.MSE(y_true[0],y_pred[0]) loss_img= tf.keras.losses.MSE(y_true[1],y_pred[1]) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_amp=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_real+loss_img+loss_amp#两个子模型各加一个完整约束 def angle_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) img_ture=tf.atan2(y_true[1],y_true[0]) img_pred=tf.atan2(y_pred[1],y_pred[0]) return tf.keras.losses.MAE(img_ture,img_pred) def amp_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_phsical=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_phsical model_in=tf.keras.Input((16,16,1)) model_real_out=ResNet18([2,2,2,2])(model_in) model_img_out=ResNet18([2,2,2,2])(model_in) model_all=tf.keras.Model(model_in,[model_real_out,model_img_out]) model_all.compile(loss=phsical_loss, optimizer=tf.keras.optimizers.Adam(tf.keras.optimizers.schedules.InverseTimeDecay( 0.001, decay_steps=250*25, decay_rate=1, staircase=False)), metrics=['mse']) checkpoint_save_path= "C:\\Users\\Root\\Desktop\\bysj\\model_all.ckpt" if os.path.exists(checkpoint_save_path + '.index'): print('------------------load model all---------------------') model_all.load_weights(checkpoint_save_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path, save_weights_only=True,save_best_only=True)

详细解释这段代码:def phsical_loss(y_true, y_pred): y_true =tf.cast(y_true, y_pred.dtype) loss_real=tf.keras.losses.MSE(y_true[0],y_pred[0]) loss_img= tf.keras.losses.MSE(y_true[1],y_pred[1]) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_amp=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_real+loss_img+loss_amp#两个子模型各加一个完整约束 def angle_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) img_ture=tf.atan2(y_true[1],y_true[0]) img_pred=tf.atan2(y_pred[1],y_pred[0]) return tf.keras.losses.MAE(img_ture,img_pred) def amp_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_phsical=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_phsical model_in=tf.keras.Input((16,16,1)) model_real_out=ResNet18([2,2,2,2])(model_in) model_img_out=ResNet18([2,2,2,2])(model_in) model_all=tf.keras.Model(model_in,[model_real_out,model_img_out]) model_all.compile(loss=phsical_loss, optimizer=tf.keras.optimizers.Adam(tf.keras.optimizers.schedules.InverseTimeDecay( 0.001, decay_steps=250*25, decay_rate=1, staircase=False)), metrics=['mse']) checkpoint_save_path= "C:\\Users\\Root\\Desktop\\bysj\\model_all.ckpt" if os.path.exists(checkpoint_save_path + '.index'): print('------------------load model all---------------------') model_all.load_weights(checkpoint_save_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path, save_weights_only=True,save_best_only=True)

大家在看

recommend-type

【答题卡识别】 Hough变换答题卡识别【含Matlab源码 250期】.zip

Matlab领域上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别
recommend-type

Solar-Wind-Hybrid-Power-plant_matlab_

hybrid solar wind farm using matlab
recommend-type

OZ9350 设计规格书

OZ9350 设计规格书
recommend-type

看nova-scheduler如何选择计算节点-每天5分钟玩转OpenStack

本节重点介绍nova-scheduler的调度机制和实现方法:即解决如何选择在哪个计算节点上启动instance的问题。创建Instance时,用户会提出资源需求,例如CPU、内存、磁盘各需要多少。OpenStack将这些需求定义在flavor中,用户只需要指定用哪个flavor就可以了。可用的flavor在System->Flavors中管理。Flavor主要定义了VCPU,RAM,DISK和Metadata这四类。nova-scheduler会按照flavor去选择合适的计算节点。VCPU,RAM,DISK比较好理解,而Metatdata比较有意思,我们后面会具体讨论。下面介绍nova-s
recommend-type

机器视觉选型计算概述-不错的总结

机器视觉选型计算概述-不错的总结

最新推荐

recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

from keras import backend as K def AUC(y_true, y_pred): not_y_pred = K.logical_not(y_pred) y_int1 = y_true * y_pred y_int0 = not_y_pred * not_y_pred TP = K.sum(y_pred * y_int1) FP = K.sum(y_pred...
recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

from keras.metrics import top_k_categorical_accuracy def top_2_accuracy(in_gt, in_pred): return top_k_categorical_accuracy(in_gt, in_pred, k=2) model = load_model("model.h5", custom_objects={'top_2...
recommend-type

浅谈keras中的keras.utils.to_categorical用法

1. 函数签名:`keras.utils.to_categorical(y, num_classes=None, dtype='float32')` - `y`: 输入的整型标签数组,通常是训练集或验证集的标签。 - `num_classes`: 可选参数,指定类别总数。如果不提供,则会自动...
recommend-type

关于keras.layers.Conv1D的kernel_size参数使用介绍

在深度学习领域,Keras库提供了许多用于构建神经网络的层,其中`keras.layers.Conv1D`是专门用于处理一维数据的卷积层。本文将深入探讨`Conv1D`层中的`kernel_size`参数,以及它如何影响模型的构建和功能。 `kernel...
recommend-type

在keras中model.fit_generator()和model.fit()的区别说明

在Keras库中,`model.fit()`和`model.fit_generator()`是两个用于训练深度学习模型的关键函数。它们都用于更新模型的权重以最小化损失函数,但针对不同类型的输入数据和场景有不同的适用性。 首先,`model.fit()`是...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"