翻译def auto_arima(ts): au = sm.tsa.arima.auto_arima(ts) return au
时间: 2024-06-02 09:11:46 浏览: 154
这段代码实现的功能是自动选择时序模型的参数,其中 `ts` 是时间序列数据。具体来说,它调用了 `statsmodels.tsa.arima_model` 模块中的 `auto_arima` 函数,该函数可以自动选择 ARIMA 模型(自回归移动平均模型)的阶数和参数,以最小化 AIC(赤池信息准则)或 BIC(贝叶斯信息准则)等模型评估指标。最后,该函数返回了自动选择的模型对象 `au`。
相关问题
优化代码from statsmodels.tsa.arima_model import ARIMA arma_mod20 = sm.tsa.ARIMA(dta,(2,0)).fit() print(arma_mod20.aic,arma_mod20.bic,arma_mod20.hqic) arma_mod01 = sm.tsa.ARIMA(dta,(0,1)).fit() print(arma_mod01.aic,arma_mod01.bic,arma_mod01.hqic) arma_mod10 = sm.tsa.ARIMA(dta,(1,0)).fit() print(arma_mod10.aic,arma_mod10.bic,arma_mod10.hqic)
可以将代码优化为以下形式:
```
import statsmodels.api as sm
# 设置 ARMA 模型的参数范围
p_range = range(3)
q_range = range(3)
best_aic = float("inf")
best_order = None
# 遍历所有参数组合,找到 AIC 最小的模型
for p in p_range:
for q in q_range:
try:
arma_model = sm.tsa.ARIMA(dta, order=(p, 0, q)).fit()
if arma_model.aic < best_aic:
best_aic = arma_model.aic
best_order = (p, 0, q)
except:
continue
# 输出 AIC 最小的模型的参数和值
best_model = sm.tsa.ARIMA(dta, order=best_order).fit()
print(f"AIC: {best_model.aic}, BIC: {best_model.bic}, HQIC: {best_model.hqic}")
```
这样可以自动遍历所有的参数组合,找到 AIC 最小的模型,并输出其参数和值。同时,还加入了异常处理,以防止出现无法拟合的情况。
arima_model = sm.tsa.ARIMA(train_data, order=(8, 1, 0)).fit() arima_result = arima_model.fit(disp=False) print(arima_result.summary())检查并修改
这段代码有点问题,因为你用 `arima_model.fit()` 已经进行了拟合,所以不需要再用 `arima_result = arima_model.fit()` 进行一次拟合。可以直接使用 `arima_model.summary()` 来查看 ARIMA 模型的拟合结果。
修改后的代码如下:
```
arima_model = sm.tsa.ARIMA(train_data, order=(8, 1, 0)).fit(disp=False)
print(arima_model.summary())
```
这样就可以查看 ARIMA 模型的拟合结果了。
阅读全文