如果要n个隐藏层呢
时间: 2023-09-19 19:13:29 浏览: 77
如果要 n 个隐藏层,我们可以对神经网络模型进行修改,使其具有 n 个隐藏层。以下是一个包含 n 个隐藏层的神经网络模型的代码示例:
```python
import numpy as np
# 导入训练集和训练集对应的标签并将其初始化
X_train, T_train = idx2numpy.convert_from_file('emnist/emnist-letters-train-images-idx3-ubyte'), idx2numpy.convert_from_file('emnist/emnist-letters-train-labels-idx1-ubyte')
X_train, T_train = X_train.copy(), T_train.copy()
X_train = X_train.reshape((X_train.shape[0], -1))
T_train = T_train - 1
T_train = np.eye(26)[T_train]
# 导入测试集和测试集对应的标签标签并将其初始化
X_test, T_test = idx2numpy.convert_from_file('emnist/emnist-letters-test-images-idx3-ubyte'), idx2numpy.convert_from_file('emnist/emnist-letters-test-labels-idx1-ubyte')
X_test, T_test = X_test.copy(), T_test.copy()
X_test = X_test.reshape((X_test.shape[0], -1))
T_test = T_test - 1
T_test = np.eye(26)[T_test]
# 定义神经网络模型
class NeuralNetwork:
def __init__(self, num_inputs, num_hidden, num_outputs, num_layers):
# 初始化权重
self.weights = []
self.weights.append(np.random.randn(num_inputs, num_hidden))
for i in range(num_layers - 1):
self.weights.append(np.random.randn(num_hidden, num_hidden))
self.weights.append(np.random.randn(num_hidden, num_outputs))
def sigmoid(self, x):
# sigmoid激活函数
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
# sigmoid函数的导数
return x * (1 - x)
def forward(self, X):
# 前向传播
self.hidden = []
self.hidden.append(self.sigmoid(np.dot(X, self.weights[0])))
for i in range(len(self.weights) - 2):
self.hidden.append(self.sigmoid(np.dot(self.hidden[i], self.weights[i + 1])))
self.output = self.sigmoid(np.dot(self.hidden[-1], self.weights[-1]))
return self.output
def backward(self, X, y, output):
# 反向传播
self.output_error = y - output
self.output_delta = self.output_error * self.sigmoid_derivative(output)
self.hidden_error = []
self.hidden_delta = []
self.hidden_error.append(self.output_delta.dot(self.weights[-1].T))
self.hidden_delta.append(self.hidden_error[-1] * self.sigmoid_derivative(self.hidden[-1]))
for i in range(len(self.weights) - 3, -1, -1):
self.hidden_error.append(self.hidden_delta[-1].dot(self.weights[i + 1].T))
self.hidden_delta.append(self.hidden_error[-1] * self.sigmoid_derivative(self.hidden[i]))
self.hidden_delta.reverse()
self.hidden.append(X)
for i in range(len(self.weights)):
self.weights[i] += self.hidden[i].T.dot(self.hidden_delta[i])
def train(self, X, y):
# 训练模型
output = self.forward(X)
self.backward(X, y, output)
def predict(self, X):
# 预测
return np.argmax(self.forward(X), axis=1)
# 初始化神经网络
nn = NeuralNetwork(784, 50, 26, 3) # 3个隐藏层
# 训练神经网络
for i in range(1000):
nn.train(X_train, T_train)
# 在测试集上进行预测
predictions = nn.predict(X_test)
# 计算准确率
accuracy = np.mean(predictions == np.argmax(T_test, axis=1))
print("Accuracy:", accuracy)
```
与之前的代码相比,主要的改变在于初始化权重和前向传播、反向传播的过程。在初始化权重时,我们需要为每一层都生成一个权重矩阵,然后将它们存储在一个列表中。在前向传播的过程中,我们需要对每一层都进行运算,并将中间结果存储在一个列表中以供后续使用。在反向传播的过程中,我们需要从输出层开始,逐层计算误差和梯度,并更新权重矩阵。
阅读全文