vs 2017 c++以第一个有输入层点数为3,第一个隐藏层点数为3,第二个隐藏层点数为2,输入层点数为3的bp神经网络为例,讲例bp函数以算法解说

时间: 2024-05-28 08:09:11 浏览: 78
PDF

利用C++ R3层断链实现模块隐藏功能

好的,很高兴为您回答这个问题。 首先,您提到的 "bp" 是指反向传播算法(Back-Propagation),它是用于训练神经网络的一种常用算法。现在,让我们来解释一下如何应用反向传播算法来训练一个有输入层为3,第一个隐藏层点数为3,第二个隐藏层点数为2,输出层为1的神经网络。 算法步骤如下: 1. 初始化神经网络的权重和偏移 我们可以随机生成小数来初始化权重和偏移。对于输入层到第一个隐藏层的权重,我们需要一个3x3的矩阵,对于第一个隐藏层到第二个隐藏层的权重,我们需要一个3x2的矩阵,对于第二个隐藏层到输出层的权重,我们需要一个2x1的矩阵。偏移量可以是一个1x3的向量,一个1x2的向量和一个值。 2. 前向传播 将输入向量传递进网络中,通过第一层到第二层和第二层到第三层的矩阵乘积和偏移量来计算输出。这个输出可以用以下公式表示: $Z_{1} = X.W_{1} + b_{1}$ $H1 = tanh(Z_{1})$ $Z_{2} = H1.W_{2} + b_{2}$ $y_{pred} = sigmoid(Z_{2})$ 其中,$X$是输入向量,$W_{1}$,$W_{2}$是权重矩阵,$b_{1}$,$b_{2}$是偏移向量,$H1$是第一个隐藏层的激活值,$y_{pred}$是输出。 3. 计算损失 为了训练网络,我们需要定义一个损失函数。这里我们使用二次损失函数,公式为: $J(w,b) = \frac{1}{2n} \sum_{i=1}^{n} (y_{i} - y_{pred,i})^{2}$ 其中,$n$是训练样本数量,$y_{i}$是实际输出,$y_{pred,i}$是预测输出。 4. 反向传播 现在,我们需要计算每个权重和偏移量的梯度,这个过程通常被称为反向传播。我们将使用链式法则来计算梯度,即从输出层向后传递梯度。 对于权重和偏移量的梯度,我们可以使用以下公式进行计算: $dZ_{2} = y_{pred} - y$ $dW_{2} = H1^{T} . dZ_{2}$ $db_{2} = \sum dZ_{2}$ $dH1 = dZ_{2} . W_{2}^{T}$ $dZ_{1} = dH1 \odot (1 - H1^{2})$ $dW_{1} = X^{T} . dZ_{1}$ $db_{1} = \sum dZ_{1}$ 其中,$\odot$ 表示元素乘积。 5. 更新权重和偏移量 现在我们可以使用上面计算的梯度来更新权重和偏移量了。更新方程式如下: $W_{1} = W_{1} - \alpha . dW_{1}$ $b_{1} = b_{1} - \alpha . db_{1}$ $W_{2} = W_{2} - \alpha . dW_{2}$ $b_{2} = b_{2} - \alpha . db_{2}$ 其中,$\alpha$是学习率。 6. 重复步骤2到步骤5,直到我们的模型收敛,或者达到了我们定义的训练迭代次数。 以上就是构建一个有输入层为3,第一个隐藏层点数为3,第二个隐藏层点数为2,输出层为1的神经网络,并使用反向传播算法训练的全过程。希望对您有帮助。
阅读全文

相关推荐

最新推荐

recommend-type

C++通过自定义函数找出一个整数数组中第二大数的方法

接下来,我们设置一个变量`maxnumber`来存储当前已知的最大值,初始值设定为数组的第一个元素`data[0]`。然后通过一个`for`循环,从数组的第二个元素开始遍历,比较当前元素`data[i]`与`maxnumber`的关系: 1. 如果...
recommend-type

opencv3/C++ 将图片转换为视频的实例

OpenCV3/C++ 图像转换为视频实例 OpenCV3 是一个功能强大且广泛使用的计算机视觉库,它提供了大量的图像和视频处理功能。在本文中,我们将介绍如何使用 OpenCV3 和 C++ 将一系列图片转换为视频。 知识点1:OpenCV3...
recommend-type

C++如何判断一个数字是否为质数

那么,如何使用 C++ 判断一个数字是否为质数呢?在本文中,我们将详细介绍 C++ 判断一个数字是否为质数的方法和算法。 首先,我们需要了解什么是质数。质数是大于 1 的自然数,除了 1 和它本身,没有别的因数。例如...
recommend-type

Windows安装配置C/C++(VS2017)OpenSSL开发环境配置教程

Windows安装配置C/C++(VS2017)OpenSSL开发环境配置教程 在这篇教程中,我们将详细介绍如何在Windows平台上安装和配置C/C++开发环境,并使用OpenSSL库进行开发。下面是相关的知识点: 一、开发环境准备 * 安装...
recommend-type

基础算法 第9章 第1节 动态规划基础(C++版)-2020.04.19.pdf

基础算法 第9章 第1节 动态规划基础(C++版)-2020.04.19
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。