用卷积神经网络训练segy地震数据matlab代码
时间: 2023-12-23 08:01:53 浏览: 92
以下是一个简单的卷积神经网络模型的 MATLAB 代码示例,用于训练 SEGY 地震数据:
```matlab
% 加载数据
load segy_data.mat;
% 构建卷积神经网络模型
layers = [
imageInputLayer([100 100 1])
convolution2dLayer(5, 16, 'Padding', 2)
reluLayer()
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(5, 32, 'Padding', 2)
reluLayer()
maxPooling2dLayer(2, 'Stride', 2)
fullyConnectedLayer(10)
softmaxLayer()
classificationLayer()];
% 设置训练选项
options = trainingOptions('sgdm', ...
'MaxEpochs', 10, ...
'InitialLearnRate', 0.01);
% 训练模型
net = trainNetwork(segy_data, layers, options);
```
在这个示例中,我们首先加载 SEGY 地震数据,然后定义了一个包含多个卷积层和全连接层的卷积神经网络模型。接着,我们设置了训练选项,使用随机梯度下降法(SGDM)进行训练,并设置最大迭代次数为 10,初始学习率为 0.01。最后,我们使用 `trainNetwork` 函数来训练模型,并将训练好的模型保存在 `net` 变量中。
请注意,这只是一个简单的示例,实际地震数据的处理需要更加复杂的网络结构和训练方法。此外,数据预处理、数据增强和模型调参也会对最终的训练结果产生影响,需要根据实际情况进行调整。
阅读全文