CNN-SSA-BiLSTM
时间: 2023-07-18 10:50:18 浏览: 158
CNN-SSA-BiLSTM是一种深度学习模型,用于时间序列数据的分类或回归问题。它结合了三种不同的模型结构:卷积神经网络(CNN)、奇异谱分析(SSA)和双向长短时记忆网络(BiLSTM)。
CNN主要用于提取时间序列中的局部特征,可以对时间序列进行卷积和池化操作,从而有效地提取出重要的时间序列特征。SSA则用于将时间序列分解为若干个成分,然后对这些成分进行重构,从而进一步提取出时间序列的特征。最后,BiLSTM可以捕捉时间序列中的长期依赖关系,从而更好地进行分类或回归。
CNN-SSA-BiLSTM模型在时间序列分析方面表现出色,已被广泛应用于股票价格预测、心电信号分类、语音识别等领域。
阅读全文