python-graph-core
时间: 2023-05-24 20:03:50 浏览: 304
A: Python-graph-core是一个Python模块,用于实现图形数据结构和算法。它提供了多种图形类型和算法实现,可以快速构建和分析图形数据。Python-graph-core是Python-graph库的核心部分,它提供了图形的基本结构和操作,例如节点、边、权值、遍历等。它还提供了多种图形算法的实现,例如最短路径算法、最大流算法、最小生成树算法等。Python-graph-core是一个强大的工具,可用于解决许多复杂的图形问题。
相关问题
D:\Anaconda\envs\tf1\python.exe C:/Users/夏芷琳/Desktop/VAE-LSTM-for-anomaly-detection-master/codes/train.py Traceback (most recent call last): File "C:/Users/夏芷琳/Desktop/VAE-LSTM-for-anomaly-detection-master/codes/train.py", line 2, in <module> import tensorflow as tf File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\__init__.py", line 24, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\python\__init__.py", line 52, in <module> from tensorflow.core.framework.graph_pb2 import * File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\core\framework\graph_pb2.py", line 15, in <module> from tensorflow.core.framework import node_def_pb2 as tensorflow_dot_core_dot_framework_dot_node__def__pb2 File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\core\framework\node_def_pb2.py", line 15, in <module> from tensorflow.core.framework import attr_value_pb2 as tensorflow_dot_core_dot_framework_dot_attr__value__pb2 File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\core\framework\attr_value_pb2.py", line 15, in <module> from tensorflow.core.framework import tensor_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__pb2 File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\core\framework\tensor_pb2.py", line 15, in <module> from tensorflow.core.framework import resource_handle_pb2 as tensorflow_dot_core_dot_framework_dot_resource__handle__pb2 File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\core\framework\resource_handle_pb2.py", line 41, in <module> serialized_options=None, file=DESCRIPTOR), File "D:\Anaconda\envs\tf1\lib\site-packages\google\protobuf\descriptor.py", line 561, in __new__ _message.Message._CheckCalledFromGeneratedFile() TypeError: Descriptors cannot not be created directly. If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0. If you cannot immediately regenerate your protos, some other possible workarounds are: 1. Downgrade the protobuf package to 3.20.x or lower. 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower). More information: https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates
根据错误信息,这个问题是由于你的生成的代码(`_pb2.py`文件)与你安装的protobuf版本不兼容导致的。
根据错误提示,你需要重新生成你的protobuf代码,使用protoc版本大于等于3.19.0来进行生成。这样可以确保生成的代码与你安装的protobuf版本兼容。
你可以按照以下步骤重新生成protobuf代码:
1. 确保你已经安装了最新版本的protobuf。你可以使用以下命令来升级protobuf:
```
pip install --upgrade protobuf
```
2. 确保你已经安装了protoc编译器,并且其版本大于等于3.19.0。你可以在命令行中运行以下命令来检查protoc版本:
```
protoc --version
```
如果protoc版本低于3.19.0,请更新到最新版本。你可以在Protocol Buffers的官方网站上找到适合你操作系统的安装包。
3. 使用更新后的protoc编译器重新生成protobuf代码。在命令行中运行以下命令:
```
protoc -I=<proto文件目录> --python_out=<生成代码目录> <proto文件>
```
其中,`<proto文件目录>`是包含proto文件的目录,`<生成代码目录>`是你想要生成代码的目录,`<proto文件>`是你要生成代码的proto文件名。
重新生成protobuf代码后,再运行你的程序,应该就能够解决这个问题了。如果问题仍然存在,你可以尝试降级protobuf包的版本,或者设置`PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python`环境变量来使用纯Python解析,但后者会导致解析速度较慢。
请确保按照官方文档中提供的链接获取更多信息,并根据你的具体情况进行调整。
File "E:\anaconda\envs\tensorflow1\lib\site-packages\tensorflow_core\python\training\saver.py", line 1326, in restore err, "a mismatch between the current graph and the graph") tensorflow.python.framework.errors_impl.InvalidArgumentError: Restoring from checkpoint failed. This is most likely due to a mismatch between the current graph and the graph from the checkpoint. Please ensure that you have not altered the graph expected based on the checkpoint. Original error: Assign requires shapes of both tensors to match. lhs shape= [10816,256] rhs shape= [173056,256] [[node save/Assign_5 (defined at E:\anaconda\envs\tensorflow1\lib\site-packages\tensorflow_core\python\framework\ops.py:1748) ]]
这个错误通常表示在使用`tf.train.Saver()`加载模型时,当前的计算图与检查点文件中的计算图不匹配。这可能是由于以下原因导致的:
1. 您修改了原始的计算图结构:在加载模型之前,请确保您的代码中没有对计算图进行任何更改,例如添加、删除或修改了操作或变量。
2. 检查点文件与代码中使用的模型不匹配:检查点文件是针对特定模型架构和变量的。如果您的代码中的模型与检查点文件中的模型不匹配,加载过程就会失败。请确保您使用的检查点文件与您的代码中的模型结构和变量名称完全匹配。
对于您提供的具体错误信息,它指出了一个形状不匹配的问题。`lhs shape=[10816, 256]`表示左侧张量的形状是`[10816, 256]`,而`rhs shape=[173056, 256]`表示右侧张量的形状是`[173056, 256]`。这意味着在加载检查点文件时,某个变量的形状与当前的计算图不匹配。您需要检查代码中涉及到该变量的部分,并确保其形状匹配。
如果您无法找到问题所在,可以尝试删除之前保存的检查点文件,并重新训练和保存模型。然后,再次尝试加载模型并进行预测或继续训练。
另外,如果您使用的是不同版本的TensorFlow,可能会导致计算图不匹配的问题。请确保您的代码和检查点文件是针对相同版本的TensorFlow进行操作的。如果需要,可以尝试升级或降级TensorFlow的版本以解决兼容性问题。
阅读全文