用iris数据做最大熵模型的代码
时间: 2024-05-14 07:19:36 浏览: 85
以下是使用最大熵模型对iris数据集进行分类的Python代码:
```python
from sklearn.datasets import load_iris
from sklearn.feature_extraction.text import CountVectorizer
from collections import defaultdict
import numpy as np
# 加载iris数据集
iris = load_iris()
# 特征提取,将iris数据集中的特征转化为特征向量
X = iris.data
y = iris.target
vectorizer = CountVectorizer()
feature_vectors = vectorizer.fit_transform(X)
# 构建最大熵模型
class MaxEnt(object):
def __init__(self, EPS=0.005):
self._EPS = EPS
self._samples = []
self._Y = set([])
self._numXY = defaultdict(int)
self._N = 0
self._ne = set([])
self._xyID = {}
self._n = 0
def LoadData(self, data):
self._samples = data
for items in self._samples:
Y = items[0]
X = items[1:]
self._Y.add(Y)
for x in set(X):
self._ne.add((Y, x))
self._numXY[(Y, x)] += 1
def _Initparams(self):
self._n = len(self._samples)
self._N = float(len(self._samples))
for i, y in enumerate(self._Y):
self._xyID[y] = i
self._w = [0.0] * self._n
self._lastw = self._w[:]
def probwgt(self, features, label):
wgt = 0.0
for f in features:
if (label, f) in self._ne:
wgt += self._w[self._xyID[(label, f)]]
return np.exp(wgt)
def _Convergence(self):
for last, now in zip(self._lastw, self._w):
if abs(last - now) >= self._EPS:
return False
return True
def train(self, maxiter=1000):
self._Initparams()
for i in range(maxiter):
print('iter:%d' % i)
self._lastw = self._w[:]
iterloss = 0
for j, sw in enumerate(self._samples):
sx = sw[1:]
sy = sw[0]
ey = self._CalProb(sx)
for y in self._Y:
pyx = self.probwgt(sx, y) / ey
if (y, sx) in self._numXY:
self._w[self._xyID[(y, sx)]] += 1.0 / self._N * np.log(pyx)
for x in sx:
if (y, x) in self._numXY:
self._w[self._xyID[(y, x)]] += 1.0 / self._N * np.log(pyx)
loss = np.log(ey)
for y in self._Y:
loss -= self.probwgt(sx, y) / ey * np.log(self.probwgt(sx, y) / ey)
iterloss += loss
print('iterloss:%f' % iterloss)
if self._Convergence():
break
def _CalProb(self, features):
wgs = [self.probwgt(features, y) for y in self._Y]
Z = sum(wgs)
return Z
def predict(self, input):
features = input
wgs = [self.probwgt(features, y) for y in self._Y]
Z = sum(wgs)
prob = [w / Z for w in wgs]
return prob
# 构建分类器
classifier = MaxEnt()
classifier.LoadData(np.c_[y, feature_vectors.toarray()])
classifier.train()
# 对测试样本进行分类
test_data = [[5.1, 3.5, 1.4, 0.2], [5.9, 3.0, 5.1, 1.8], [6.0, 3.4, 4.5, 1.6]]
test_vectors = vectorizer.transform(test_data)
for i, data in enumerate(test_data):
prob = classifier.predict(test_vectors.toarray()[i])
print(data, iris.target_names[np.argmax(prob)])
```
需要注意的是,使用最大熵模型对数据集进行分类需要对数据进行特征提取,并将数据转化为特征向量。在本代码中,使用了sklearn库中的`CountVectorizer`对数据进行特征提取,将每个特征转化为一个整数值。同时,在MaxEnt类的`LoadData`函数中,通过将目标值和特征向量组合成一个元素,将数据集按照最大熵模型的要求转化。
阅读全文