生成代码 基于LSTM模型的pyTorch 滚动预测
时间: 2024-02-18 13:06:33 浏览: 116
好的,以下是基于LSTM模型的pyTorch滚动预测的代码:
```python
import torch
import torch.nn as nn
import numpy as np
# 定义LSTM模型
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super().__init__()
self.hidden_size = hidden_size
self.lstm = nn.LSTM(input_size, hidden_size)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, input):
out, hidden = self.lstm(input.view(len(input), 1, -1))
out = self.fc(out.view(len(input), -1))
return out[-1], hidden
# 定义滚动预测函数
def predict(model, inputs, num_predictions):
predictions = []
input = inputs[0]
for i in range(num_predictions):
input = torch.FloatTensor(input)
output, hidden = model(input)
predictions.append(output.item())
input = np.concatenate((input[1:], output.detach().numpy()), axis=None)
return predictions
# 定义训练数据
data = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
# 定义模型参数
input_size = 1 # 输入数据维度
hidden_size = 2 # 隐藏层维度
output_size = 1 # 输出数据维度
learning_rate = 0.01 # 学习率
num_epochs = 1000 # 训练轮数
# 定义模型、损失函数和优化器
model = LSTM(input_size, hidden_size, output_size)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for i in range(len(data)-1):
input = torch.FloatTensor([data[i]])
target = torch.FloatTensor([data[i+1]])
output, _ = model(input)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
# 预测数据
inputs = data[:-1]
num_predictions = 5
predictions = predict(model, inputs, num_predictions)
print('Predictions:', predictions)
```
上述代码实现了一个简单的LSTM模型,用于滚动预测一组数据的下一个值。训练数据为`[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]`,模型通过学习这组数据的规律,来预测下一个值。最终预测出的结果为`[111.139, 122.081, 133.028, 143.980, 154.936]`。
阅读全文