pytorch ssim损失函数
时间: 2023-10-07 07:04:23 浏览: 196
PyTorch中的SSIM损失函数可以通过安装`torchvision`包来实现。`torchvision`包是PyTorch官方提供的计算机视觉工具包,其中包含了许多常用的图像处理函数和模型。
下面是一个使用SSIM损失函数的例子:
```python
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF
def ssim_loss(img1, img2):
# 将图像转换为张量
img1_tensor = TF.to_tensor(img1)
img2_tensor = TF.to_tensor(img2)
# 计算SSIM损失
return 1 - F.ssim(img1_tensor, img2_tensor, data_range=1, size_average=True)
# 示例使用
img1 = Image.open('img1.png')
img2 = Image.open('img2.png')
loss = ssim_loss(img1, img2)
```
在这个例子中,`ssim_loss`函数接受两个PIL图像对象作为输入,然后将它们转换为PyTorch张量并计算SSIM损失。`data_range`参数指定像素值的范围,这里是1(即[0, 1])。`size_average`参数指定是否对每个像素的SSIM损失进行平均。最终返回的是归一化的SSIM损失。
相关问题
ssim损失函数pytorch实现
好的,关于ssim损失函数的PyTorch实现,可以参考以下代码:
```
import torch
import torch.nn.functional as F
def ssim_loss(img1, img2, window_size=11, size_average=True, sigma=1.5):
# Set the window size
window = create_window(window_size, img1.size(1), sigma=sigma)
# Compute the mean of the images
mu1 = F.conv2d(img1, window, padding=window_size//2, groups=img1.size(1))
mu2 = F.conv2d(img2, window, padding=window_size//2, groups=img1.size(1))
# Compute the variances and the covariances
sigma1_sq = F.conv2d(img1*img1, window, padding=window_size//2, groups=img1.size(1)) - mu1*mu1
sigma2_sq = F.conv2d(img2*img2, window, padding=window_size//2, groups=img1.size(1)) - mu2*mu2
sigma12 = F.conv2d(img1*img2, window, padding=window_size//2, groups=img1.size(1)) - mu1*mu2
# Compute the SSIM index
C1 = (0.01)**2
C2 = (0.03)**2
ssim_map = ((2*mu1*mu2 + C1)*(2*sigma12 + C2))/((mu1**2 + mu2**2 + C1)*(sigma1_sq + sigma2_sq + C2))
ssim_index = torch.mean(ssim_map)
# Compute the loss
return 1 - ssim_index
def create_window(window_size, channel, sigma=1.5):
# Create a 2D Gaussian window
gauss = torch.Tensor([math.exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
gauss_2d = torch.mm(gauss.unsqueeze(1), gauss.unsqueeze(0))
window = torch.Tensor(gauss_2d.expand(channel, 1, window_size, window_size).contiguous())
# Normalize the window
window = window / window.sum()
return window
```
希望对你有帮助!
pytorch SSIM loss
在 PyTorch 中,可以使用 PyTorch 的 SSIM 损失函数来计算图像的结构相似性指数。SSIM 损失函数是一种用于测量图像质量的指标,它考虑了图像的亮度、对比度和结构等因素。下面是一个使用 PyTorch SSIM 损失函数的示例代码:
```python
import torch
import torch.nn.functional as F
from math import exp
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
return window
def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False):
_, channel, _, _ = img1.size()
if window is None:
real_size = min(window_size, img1.size()[2])
window = create_window(real_size, channel).to(img1.device)
mu1 = F.conv2d(img1, window, padding=real_size//2, groups=channel)
mu2 = F.conv2d(img2, window, padding=real_size//2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=real_size//2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=real_size//2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=real_size//2, groups=channel) - mu1_mu2
C1 = (0.01) ** 2
C2 = (0.03) ** 2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
if size_average:
ret = ssim_map.mean()
else:
ret = ssim_map.mean(1).mean(1).mean(1)
if full:
return ret, ssim_map
return ret
```
在上面的代码中,`ssim()` 函数接受两个输入图像 `img1` 和 `img2`,并返回它们的 SSIM 相似度。函数中使用了高斯滤波器来计算图像的均值和方差,以及结构相似性指数。如果需要返回 SSIM 相似度图,则可以将 `full` 参数设置为 `True`。
阅读全文