给我提供一个第一类装配线平衡问题python代码
时间: 2024-12-24 13:33:45 浏览: 7
在Python中处理第一类装配线平衡问题通常涉及优化任务分配,确保每个工作站的工作量尽可能均衡,以便提高生产效率。这是一个经典的组合优化问题,可以使用遗传算法、模拟退火等算法解决。下面是一个简单的例子,使用模拟退火算法求解:
```python
import numpy as np
# 假设我们有n个工作站和m件产品
def fitness_function(workload):
# 这里只是一个简化版本,实际计算应考虑工作强度、机器效率等因素
return sum(workload)
def swap(solution):
# 随机选择两个元素交换位置
i = np.random.randint(0, len(solution) - 1)
j = np.random.randint(i + 1, len(solution))
solution[i], solution[j] = solution[j], solution[i]
return solution
def annealing(initial_solution, temp=1000, cooling_rate=0.95, max_iter=1000):
current_solution = initial_solution.copy()
best_solution = initial_solution
best_fitness = fitness_function(current_solution)
for _ in range(max_iter):
new_solution = swap(current_solution)
new_fitness = fitness_function(new_solution)
if new_fitness < best_fitness:
best_solution = new_solution
best_fitness = new_fitness
acceptance_prob = np.exp((best_fitness - new_fitness) / temp)
if np.random.rand() < acceptance_prob:
current_solution = new_solution
temp *= cooling_rate
return best_solution, best_fitness
# 示例:假设我们有5个工作站和10件产品
n_workstations = 5
products = list(range(1, n_workstations + 1))
# 初始化一个随机解决方案
initial_solution = np.random.permutation(products)
optimal_solution, optimal_fitness = annealing(initial_solution)
print(f"最优解:{optimal_solution}, 最优值:{optimal_fitness}")
阅读全文