我已训练好模型,输出四个分类 0 ,1,2,3;帮我写一段程序,输入一个视频,调用该模型进行每秒识别两帧识别处理,当识别结果为2,输出该帧前后3分钟视频存放到文件夹1,该帧前后1秒输出5帧存放到文件夹2,前后3分钟每秒取一帧输出到文件夹3
时间: 2024-03-13 18:44:48 浏览: 87
好的,这是一个比较复杂的需求,需要用到视频处理和机器学习相关的技术,下面是一个简单的代码实现,仅供参考:
```python
import cv2
import numpy as np
import tensorflow as tf
import os
# 加载模型
model = tf.keras.models.load_model('model.h5')
# 定义分类标签
labels = ['0', '1', '2', '3']
# 定义存储文件夹
folder1 = 'folder1'
folder2 = 'folder2'
folder3 = 'folder3'
# 创建文件夹
if not os.path.exists(folder1):
os.mkdir(folder1)
if not os.path.exists(folder2):
os.mkdir(folder2)
if not os.path.exists(folder3):
os.mkdir(folder3)
# 打开视频文件
cap = cv2.VideoCapture('video.mp4')
# 获取视频帧率
fps = int(cap.get(cv2.CAP_PROP_FPS))
# 定义变量
frame_count = 0
result_list = []
output_1 = False
output_2 = False
output_3 = False
# 读取视频帧
while True:
ret, frame = cap.read()
if not ret:
break
# 每秒处理两帧
if frame_count % int(fps / 2) == 0:
# 将帧大小调整为模型输入大小
frame = cv2.resize(frame, (224, 224))
# 将帧转换为模型输入格式
input_data = np.expand_dims(frame, axis=0)
# 模型预测
result = model.predict(input_data)
# 获取分类结果
label = labels[np.argmax(result)]
# 添加到结果列表中
result_list.append(label)
# 判断是否需要输出结果
if label == '2':
output_1 = True
output_2 = True
output_3 = True
# 输出文件夹1
if output_1:
# 获取当前帧时间戳
timestamp = cap.get(cv2.CAP_PROP_POS_MSEC)
# 获取前后3分钟的视频帧
start_time = max(0, timestamp - 3 * 60 * 1000)
end_time = min(cap.get(cv2.CAP_PROP_FRAME_COUNT), timestamp + 3 * 60 * 1000)
cap.set(cv2.CAP_PROP_POS_MSEC, start_time)
while cap.get(cv2.CAP_PROP_POS_MSEC) < end_time:
ret, frame = cap.read()
if not ret:
break
cv2.imwrite(os.path.join(folder1, f'{frame_count}.jpg'), frame)
frame_count += 1
output_1 = False
# 输出文件夹2
if output_2:
# 获取当前帧时间戳
timestamp = cap.get(cv2.CAP_PROP_POS_MSEC)
# 获取前后1秒的视频帧
start_time = max(0, timestamp - 1000)
end_time = min(cap.get(cv2.CAP_PROP_FRAME_COUNT), timestamp + 1000)
cap.set(cv2.CAP_PROP_POS_MSEC, start_time)
while cap.get(cv2.CAP_PROP_POS_MSEC) < end_time:
ret, frame = cap.read()
if not ret:
break
cv2.imwrite(os.path.join(folder2, f'{frame_count}.jpg'), frame)
frame_count += 1
output_2 = False
# 输出文件夹3
if output_3:
# 获取当前帧时间戳
timestamp = cap.get(cv2.CAP_PROP_POS_MSEC)
# 获取前后3分钟每秒的视频帧
start_time = max(0, timestamp - 3 * 60 * 1000)
end_time = min(cap.get(cv2.CAP_PROP_FRAME_COUNT), timestamp + 3 * 60 * 1000)
cap.set(cv2.CAP_PROP_POS_MSEC, start_time)
while cap.get(cv2.CAP_PROP_POS_MSEC) < end_time:
ret, frame = cap.read()
if not ret:
break
if frame_count % fps == 0:
cv2.imwrite(os.path.join(folder3, f'{frame_count}.jpg'), frame)
frame_count += 1
output_3 = False
# 更新帧计数器
frame_count += 1
# 释放视频文件
cap.release()
```
需要注意的是,这段代码仅供参考,具体实现还需要根据实际情况进行调整。同时,还需要安装 OpenCV 和 TensorFlow 等相关库才能运行此程序。
阅读全文