使用c语言编写模糊控制算法
时间: 2023-07-26 16:32:45 浏览: 116
以下是一个使用 C 语言编写模糊控制算法的示例:
首先,我们定义模糊控制器的输入和输出:
```c
// 模糊控制器的输入
typedef struct {
float error; // 误差
float delta; // 误差变化率
} FuzzyInput;
// 模糊控制器的输出
typedef struct {
float control; // 控制量
} FuzzyOutput;
```
接下来,我们定义模糊控制器的模糊集和规则:
```c
// 模糊集
typedef struct {
char* name; // 模糊集名称
float* membership; // 模糊隶属度函数
int size; // 模糊集大小
} FuzzySet;
// 规则
typedef struct {
int antecedent1; // 前提1所属模糊集的索引
int antecedent2; // 前提2所属模糊集的索引
int consequent; // 结论所属模糊集的索引
float weight; // 规则权重
} FuzzyRule;
```
然后,我们定义模糊控制器的模糊集和规则:
```c
// 模糊控制器的模糊集
FuzzySet errorSet = {
.name = "error",
.membership = {0, 0.2, 0.4, 0.6, 0.8, 1, 0.8, 0.6, 0.4, 0.2},
.size = 10
};
FuzzySet deltaSet = {
.name = "delta",
.membership = {-1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1},
.size = 11
};
FuzzySet controlSet = {
.name = "control",
.membership = {-1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1},
.size = 11
};
// 模糊控制器的规则
FuzzyRule rules[] = {
{.antecedent1 = 0, .antecedent2 = 0, .consequent = 0, .weight = 1},
{.antecedent1 = 0, .antecedent2 = 1, .consequent = 1, .weight = 0.8},
{.antecedent1 = 0, .antecedent2 = 2, .consequent = 2, .weight = 0.6},
{.antecedent1 = 0, .antecedent2 = 3, .consequent = 3, .weight = 0.4},
{.antecedent1 = 0, .antecedent2 = 4, .consequent = 4, .weight = 0.2},
{.antecedent1 = 1, .antecedent2 = 0, .consequent = 1, .weight = 0.8},
{.antecedent1 = 1, .antecedent2 = 1, .consequent = 2, .weight = 0.6},
{.antecedent1 = 1, .antecedent2 = 2, .consequent = 3, .weight = 0.4},
{.antecedent1 = 1, .antecedent2 = 3, .consequent = 4, .weight = 0.2},
{.antecedent1 = 2, .antecedent2 = 0, .consequent = 2, .weight = 0.6},
{.antecedent1 = 2, .antecedent2 = 1, .consequent = 3, .weight = 0.4},
{.antecedent1 = 2, .antecedent2 = 2, .consequent = 4, .weight = 0.2},
{.antecedent1 = 3, .antecedent2 = 0, .consequent = 3, .weight = 0.4},
{.antecedent1 = 3, .antecedent2 = 1, .consequent = 4, .weight = 0.2},
{.antecedent1 = 4, .antecedent2 = 0, .consequent = 4, .weight = 0.2},
};
// 模糊控制器的规则数量
const int numRules = sizeof(rules) / sizeof(FuzzyRule);
```
最后,我们可以编写模糊控制器的函数:
```c
FuzzyOutput fuzzyController(FuzzyInput input) {
// 计算每个输入值所属的模糊集
int errorSetIndex = floor((input.error - (-1)) / (2.0 / errorSet.size));
int deltaSetIndex = floor((input.delta - (-1)) / (2.0 / deltaSet.size));
// 计算每个规则的前提部分的隶属度
float antecedentMemberships[numRules];
for (int i = 0; i < numRules; i++) {
antecedentMemberships[i] = fminf(errorSet.membership[errorSetIndex + rules[i].antecedent1], deltaSet.membership[deltaSetIndex + rules[i].antecedent2]);
}
// 计算每个规则的结论部分的隶属度
float consequentMemberships[numRules][controlSet.size];
for (int i = 0; i < numRules; i++) {
for (int j = 0; j < controlSet.size; j++) {
consequentMemberships[i][j] = fminf(antecedentMemberships[i], controlSet.membership[j + rules[i].consequent]);
}
}
// 计算控制量的隶属度
float controlMemberships[controlSet.size];
for (int i = 0; i < controlSet.size; i++) {
controlMemberships[i] = 0;
for (int j = 0; j < numRules; j++) {
controlMemberships[i] = fmaxf(controlMemberships[i], consequentMemberships[j][i] * rules[j].weight);
}
}
// 计算控制量的平均值
float controlSum = 0;
float membershipSum = 0;
for (int i = 0; i < controlSet.size; i++) {
controlSum += controlSet.membership[i] * controlMemberships[i];
membershipSum += controlMemberships[i];
}
float control = controlSum / membershipSum;
// 返回控制量
FuzzyOutput output = {.control = control};
return output;
}
```
这个模糊控制器函数接受一个 FuzzyInput 结构体作为输入,包含误差和误差变化率两个值。它返回一个 FuzzyOutput 结构体,包含控制量的值。在函数中,我们首先计算输入值所属的模糊集,然后计算每个规则的前提部分和结论部分的隶属度,并计算控制量的隶属度和平均值。最后返回控制量的值。
这只是一个简单的模糊控制器的示例,实际应用中可能需要更复杂的模糊集和规则,以及更复杂的控制算法。
阅读全文