可以在keras.Model中设置batch吗
时间: 2024-03-19 07:45:24 浏览: 108
在 Keras 中,可以在 `model.fit()` 函数中设置 batch 大小,而在 `model.predict()` 函数中则不需要设置 batch 大小。
在 `model.fit()` 函数中,batch 大小是通过 `batch_size` 参数来设置的。例如,下面的代码将 batch 大小设置为 32:
```python
model.fit(x_train, y_train, batch_size=32, epochs=10)
```
在 `model.predict()` 函数中,不需要设置 batch 大小,因为该函数默认会对整个数据集进行预测。例如,下面的代码将使用模型对 `x_test` 进行预测:
```python
y_pred = model.predict(x_test)
```
在这个例子中,`x_test` 中的所有样本都会被一次性输入到模型中进行预测,不需要手动设置 batch 大小。
相关问题
def build_model(self, input_shape, nb_classes): x = keras.layers.Input(input_shape) conv1 = keras.layers.Conv1D(128, 8, 1, padding='same')(x) conv1 = keras.layers.BatchNormalization()(conv1) conv1 = keras.layers.Activation('relu')(conv1) conv2 = keras.layers.Conv1D(256, 5, 1, padding='same')(conv1) conv2 = keras.layers.BatchNormalization()(conv2) conv2 = keras.layers.Activation('relu')(conv2) conv3 = keras.layers.Conv1D(128, 3, 1, padding='same')(conv2) conv3 = keras.layers.BatchNormalization()(conv3) conv3 = keras.layers.Activation('relu')(conv3) full = keras.layers.GlobalAveragePooling1D()(conv3) out = keras.layers.Dense(nb_classes, activation='softmax')(full) model = keras.models.Model(inputs=x, outputs=out) # optimizer = keras.optimizers.Adam() optimizer = keras.optimizers.Nadam() model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model
这是在 Keras 框架中定义一个模型的代码。这个模型由输入层、三个卷积层、全局平均池化层、全连接层和输出层组成。卷积层之间还有批归一化层和激活层。这个模型的输入尺寸为 `input_shape` ,输出的类别数为 `nb_classes` 。
import tensorflow as tf def build_model(input_shape): inputs = tf.keras.layers.Input(shape=input_shape) # encoder conv1 = tf.keras.layers.Conv2D(32, (3,3), activation='relu', padding='same')(inputs) conv1 = tf.keras.layers.BatchNormalization()(conv1) conv2 = tf.keras.layers.Conv2D(32, (3,3), activation='relu', padding='same')(conv1) conv2 = tf.keras.layers.BatchNormalization()(conv2) pool1 = tf.keras.layers.MaxPooling2D((2, 2))(conv2) conv3 = tf.keras.layers.Conv2D(64, (3,3), activation='relu', padding='same')(pool1) conv3 = tf.keras.layers.BatchNormalization()(conv3) conv4 = tf.keras.layers.Conv2D(64, (3,3), activation='relu', padding='same')(conv3) conv4 = tf.keras.layers.BatchNormalization()(conv4) pool2 = tf.keras.layers.MaxPooling2D((2, 2))(conv4) conv5 = tf.keras.layers.Conv2D(128, (3,3), activation='relu', padding='same')(pool2) conv5 = tf.keras.layers.BatchNormalization()(conv5) conv6 = tf.keras.layers.Conv2D(128, (3,3), activation='relu', padding='same')(conv5) conv6 = tf.keras.layers.BatchNormalization()(conv6) pool3 = tf.keras.layers.MaxPooling2D((2, 2))(conv6) # decoder up1 = tf.keras.layers.Conv2DTranspose(64, (2,2), strides=(2,2), padding='same')(pool3) merge1 = tf.keras.layers.concatenate([conv4, up1]) conv7 = tf.keras.layers.Conv2D(64, (3,3), activation='relu', padding='same')(merge1) conv7 = tf.keras.layers.BatchNormalization()(conv7) conv8 = tf.keras.layers.Conv2D(64, (3,3), activation='relu', padding='same')(conv7) conv8 = tf.keras.layers.BatchNormalization()(conv8) up2 = tf.keras.layers.Conv2DTranspose(32, (2,2), strides=(2,2), padding='same')(conv8) merge2 = tf.keras.layers.concatenate([conv2, up2]) conv9 = tf.keras.layers.Conv2D(32, (3,3), activation='relu', padding='same')(merge2) conv9 = tf.keras.layers.BatchNormalization()(conv9) conv10 = tf.keras.layers.Conv2D(32, (3,3), activation='relu', padding='same')(conv9) conv10 = tf.keras.layers.BatchNormalization()(conv10) outputs = tf.keras.layers.Conv2D(3, (3,3), padding='same')(conv10) model = tf.keras.models.Model(inputs=inputs, outputs=outputs) return model
这段代码是使用TensorFlow库导入并定义了一个函数build_model,在该函数中使用了tf.keras.layers库的Input函数生成一个输入层,该层的输入形状由参数input_shape指定。
阅读全文