我有一个形状是(307,16992)的交通数据集,我现在已经把它变成了形状为(7,1358,12,307,2)的交通数据集,其中7是槽的数量,307是交通传感器节点个数。0维是速度特征,1维是根据邻接矩阵划分的度。我现在想利用GAT作为VAE的编码器,对度一致的节点计算注意力系数,这个pytorch代码怎么写?另外,我需要构造一个3层MLP来作为另一编码器,对每个槽中的数据计算隐变量,这个代码又该怎么写?注意力网络那边用点注意力机制,我的数据集太大了,经常出现killed的情况,但是我不知道怎么修改?我该怎么成功运行并且避免内存爆炸的情况?请给我一个能成功运行的实例,且避免killed和内存爆炸的实例代码 pytorch

时间: 2023-12-11 15:02:04 浏览: 154
首先,关于利用GAT作为VAE的编码器,对度一致的节点计算注意力系数的代码,可以参考以下代码: ```python import torch import torch.nn as nn import torch.nn.functional as F from torch_geometric.nn import GATConv class GATEncoder(nn.Module): def __init__(self, in_channels, out_channels, heads, num_layers): super(GATEncoder, self).__init__() self.conv_layers = nn.ModuleList() self.conv_layers.append(GATConv(in_channels, out_channels, heads=heads)) for i in range(num_layers - 1): self.conv_layers.append(GATConv( out_channels * heads, out_channels, heads=heads)) def forward(self, x, edge_index): for conv in self.conv_layers: x = F.elu(conv(x, edge_index)) return x ``` 这里我们使用了PyTorch Geometric中的GATConv来实现GAT。`in_channels`表示输入特征的维度,`out_channels`表示输出特征的维度,`heads`表示头数,`num_layers`表示层数。在forward函数中,我们通过多层GATConv对输入特征进行编码。 接下来是构造MLP作为另一编码器的代码: ```python class MLPEncoder(nn.Module): def __init__(self, input_dim, hidden_dim, latent_dim): super(MLPEncoder, self).__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, latent_dim) self.fc3 = nn.Linear(hidden_dim, latent_dim) def forward(self, x): x = F.relu(self.fc1(x)) mu = self.fc2(x) log_var = self.fc3(x) return mu, log_var ``` 这里我们构造了一个三层的MLP,其中输入维度为`input_dim`,隐藏层维度为`hidden_dim`,输出维度为`latent_dim`。在forward函数中,我们通过两个全连接层和一个ReLU激活函数对输入特征进行编码,并输出均值和方差。 关于避免内存爆炸的问题,可以考虑以下几点: 1. 使用分批训练:将数据集分成多个batch,每个batch只加载一部分数据进行训练。 2. 降低batch size:减小每个batch的大小,可以降低内存占用。 3. 减小模型大小:可以减小模型的参数数量或使用轻量级模型来减少内存占用。 4. 使用GPU:使用GPU可以加速计算,并且可以处理更大的数据集。 下面是一个简单的示例代码,使用GAT和MLP对交通数据进行编码和解码: ```python import torch import torch.nn as nn import torch.nn.functional as F from torch_geometric.nn import GATConv class GATEncoder(nn.Module): def __init__(self, in_channels, out_channels, heads, num_layers): super(GATEncoder, self).__init__() self.conv_layers = nn.ModuleList() self.conv_layers.append(GATConv(in_channels, out_channels, heads=heads)) for i in range(num_layers - 1): self.conv_layers.append(GATConv( out_channels * heads, out_channels, heads=heads)) def forward(self, x, edge_index): for conv in self.conv_layers: x = F.elu(conv(x, edge_index)) return x class MLPEncoder(nn.Module): def __init__(self, input_dim, hidden_dim, latent_dim): super(MLPEncoder, self).__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, latent_dim) self.fc3 = nn.Linear(hidden_dim, latent_dim) def forward(self, x): x = F.relu(self.fc1(x)) mu = self.fc2(x) log_var = self.fc3(x) return mu, log_var class Decoder(nn.Module): def __init__(self, latent_dim, output_dim): super(Decoder, self).__init__() self.fc1 = nn.Linear(latent_dim, 256) self.fc2 = nn.Linear(256, 512) self.fc3 = nn.Linear(512, output_dim) def forward(self, z): z = F.relu(self.fc1(z)) z = F.relu(self.fc2(z)) x = self.fc3(z) return x class GVAE(nn.Module): def __init__(self, in_channels, out_channels, heads, num_layers, input_dim, hidden_dim, latent_dim): super(GVAE, self).__init__() self.encoder = GATEncoder(in_channels, out_channels, heads, num_layers) self.mlp_encoder = MLPEncoder(input_dim, hidden_dim, latent_dim) self.decoder = Decoder(latent_dim, input_dim) def reparameterize(self, mu, log_var): std = torch.exp(0.5*log_var) eps = torch.randn_like(std) return mu + eps*std def forward(self, x, edge_index): x = self.encoder(x, edge_index) x = x.mean(dim=1) mu, log_var = self.mlp_encoder(x) z = self.reparameterize(mu, log_var) x_hat = self.decoder(z) return x_hat, mu, log_var device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = GVAE(in_channels=2, out_channels=64, heads=4, num_layers=2, input_dim=307*2, hidden_dim=256, latent_dim=32).to(device) optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) # 以下是训练代码,需要根据自己的数据集进行修改 for epoch in range(num_epochs): for batch in data_loader: batch = batch.to(device) optimizer.zero_grad() x_hat, mu, log_var = model(batch.x.float(), batch.edge_index) recon_loss = F.mse_loss(x_hat, batch.x.float(), reduction='sum') kl_loss = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) loss = recon_loss + kl_loss loss.backward() optimizer.step() ```
阅读全文

相关推荐

最新推荐

recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

(177406840)JAVA图书管理系统毕业设计(源代码+论文).rar

JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【天线性能提升密籍】:深入探究均匀线阵方向图设计原则及案例分析

![均匀线阵方向图](https://img-blog.csdnimg.cn/img_convert/0080eea0ca4af421d2bc9c74b87376c4.webp?x-oss-process=image/format,png) # 摘要 本文深入探讨了均匀线阵天线的基础理论及其方向图设计,旨在提升天线系统的性能和应用效能。文章首先介绍了均匀线阵及方向图的基本概念,并阐述了方向图设计的理论基础,包括波束形成与主瓣及副瓣特性的控制。随后,论文通过设计软件工具的应用和实际天线系统调试方法,展示了方向图设计的实践技巧。文中还包含了一系列案例分析,以实证研究验证理论,并探讨了均匀线阵性能
recommend-type

C#怎么把图片存入名为当前日期的文件夹里

在C#中,你可以通过`System.IO`命名空间下的`Directory`和`File`类来创建并存储图片到包含当前日期的文件夹里。以下是一个简单的示例: ```csharp using System; using System.IO; public void SaveImageToTodayFolder(string imagePath, string imageName) { // 获取当前日期 DateTime currentDate = DateTime.Now; string folderPath = Path.Combine(Environment.C