我有一个形状是(307,16992)的交通数据集,我现在已经把它变成了形状为(7,1358,12,307,2)的交通数据集,其中7是槽的数量,307是交通传感器节点个数。0维是速度特征,1维是根据邻接矩阵划分的度。我现在想利用GAT作为VAE的编码器,对度一致的节点计算注意力系数,这个pytorch代码怎么写?另外,我需要构造一个3层MLP来作为另一编码器,对每个槽中的数据计算隐变量,这个代码又该怎么写?注意力网络那边用点注意力机制,我的数据集太大了,经常出现killed的情况,但是我不知道怎么修改?我该怎么成功运行并且避免内存爆炸的情况?请给我一个能成功运行的实例,且避免killed和内存爆炸的实例代码 pytorch
时间: 2023-12-11 15:02:04 浏览: 154
首先,关于利用GAT作为VAE的编码器,对度一致的节点计算注意力系数的代码,可以参考以下代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GATConv
class GATEncoder(nn.Module):
def __init__(self, in_channels, out_channels, heads, num_layers):
super(GATEncoder, self).__init__()
self.conv_layers = nn.ModuleList()
self.conv_layers.append(GATConv(in_channels, out_channels, heads=heads))
for i in range(num_layers - 1):
self.conv_layers.append(GATConv(
out_channels * heads, out_channels, heads=heads))
def forward(self, x, edge_index):
for conv in self.conv_layers:
x = F.elu(conv(x, edge_index))
return x
```
这里我们使用了PyTorch Geometric中的GATConv来实现GAT。`in_channels`表示输入特征的维度,`out_channels`表示输出特征的维度,`heads`表示头数,`num_layers`表示层数。在forward函数中,我们通过多层GATConv对输入特征进行编码。
接下来是构造MLP作为另一编码器的代码:
```python
class MLPEncoder(nn.Module):
def __init__(self, input_dim, hidden_dim, latent_dim):
super(MLPEncoder, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, latent_dim)
self.fc3 = nn.Linear(hidden_dim, latent_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
mu = self.fc2(x)
log_var = self.fc3(x)
return mu, log_var
```
这里我们构造了一个三层的MLP,其中输入维度为`input_dim`,隐藏层维度为`hidden_dim`,输出维度为`latent_dim`。在forward函数中,我们通过两个全连接层和一个ReLU激活函数对输入特征进行编码,并输出均值和方差。
关于避免内存爆炸的问题,可以考虑以下几点:
1. 使用分批训练:将数据集分成多个batch,每个batch只加载一部分数据进行训练。
2. 降低batch size:减小每个batch的大小,可以降低内存占用。
3. 减小模型大小:可以减小模型的参数数量或使用轻量级模型来减少内存占用。
4. 使用GPU:使用GPU可以加速计算,并且可以处理更大的数据集。
下面是一个简单的示例代码,使用GAT和MLP对交通数据进行编码和解码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GATConv
class GATEncoder(nn.Module):
def __init__(self, in_channels, out_channels, heads, num_layers):
super(GATEncoder, self).__init__()
self.conv_layers = nn.ModuleList()
self.conv_layers.append(GATConv(in_channels, out_channels, heads=heads))
for i in range(num_layers - 1):
self.conv_layers.append(GATConv(
out_channels * heads, out_channels, heads=heads))
def forward(self, x, edge_index):
for conv in self.conv_layers:
x = F.elu(conv(x, edge_index))
return x
class MLPEncoder(nn.Module):
def __init__(self, input_dim, hidden_dim, latent_dim):
super(MLPEncoder, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, latent_dim)
self.fc3 = nn.Linear(hidden_dim, latent_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
mu = self.fc2(x)
log_var = self.fc3(x)
return mu, log_var
class Decoder(nn.Module):
def __init__(self, latent_dim, output_dim):
super(Decoder, self).__init__()
self.fc1 = nn.Linear(latent_dim, 256)
self.fc2 = nn.Linear(256, 512)
self.fc3 = nn.Linear(512, output_dim)
def forward(self, z):
z = F.relu(self.fc1(z))
z = F.relu(self.fc2(z))
x = self.fc3(z)
return x
class GVAE(nn.Module):
def __init__(self, in_channels, out_channels, heads, num_layers, input_dim, hidden_dim, latent_dim):
super(GVAE, self).__init__()
self.encoder = GATEncoder(in_channels, out_channels, heads, num_layers)
self.mlp_encoder = MLPEncoder(input_dim, hidden_dim, latent_dim)
self.decoder = Decoder(latent_dim, input_dim)
def reparameterize(self, mu, log_var):
std = torch.exp(0.5*log_var)
eps = torch.randn_like(std)
return mu + eps*std
def forward(self, x, edge_index):
x = self.encoder(x, edge_index)
x = x.mean(dim=1)
mu, log_var = self.mlp_encoder(x)
z = self.reparameterize(mu, log_var)
x_hat = self.decoder(z)
return x_hat, mu, log_var
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GVAE(in_channels=2, out_channels=64, heads=4, num_layers=2, input_dim=307*2, hidden_dim=256, latent_dim=32).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
# 以下是训练代码,需要根据自己的数据集进行修改
for epoch in range(num_epochs):
for batch in data_loader:
batch = batch.to(device)
optimizer.zero_grad()
x_hat, mu, log_var = model(batch.x.float(), batch.edge_index)
recon_loss = F.mse_loss(x_hat, batch.x.float(), reduction='sum')
kl_loss = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
loss = recon_loss + kl_loss
loss.backward()
optimizer.step()
```
阅读全文