Roberts算子、Canny算子、Sobel算子、Prewitt算子各自的原理是什么
时间: 2023-12-29 09:06:16 浏览: 120
这些算子都是在图像处理中常用的边缘检测算法,具体原理如下:
1. Roberts算子:Roberts算子是一种基于微分的边缘检测算法,其原理是将一个图像中的每个像素点与其相邻的像素点进行微分运算,从而得到两个方向的边缘强度值。Roberts算子的优点是计算速度快,但其对噪声比较敏感。
2. Canny算子:Canny算子是一种基于梯度的边缘检测算法,其原理是先对图像进行高斯滤波,然后计算每个像素点的梯度和方向,并对梯度进行非极大值抑制和双阈值处理,最终得到图像的边缘信息。Canny算子的优点是能够有效地抑制噪声,并且能够检测到比较细的边缘。
3. Sobel算子:Sobel算子也是一种基于梯度的边缘检测算法,其原理是通过一组3x3的卷积核对图像进行卷积操作,从而计算每个像素点的梯度和方向,并通过非极大值抑制和双阈值处理得到图像的边缘信息。Sobel算子的优点是计算速度快,并且能够检测到比较细的边缘。
4. Prewitt算子:Prewitt算子也是一种基于梯度的边缘检测算法,其原理与Sobel算子类似,只是使用的卷积核不同。Prewitt算子的优点是计算速度快,并且能够检测到比较细的边缘,但其对噪声也比较敏感。
相关问题
Roberts算子、Prewitt算子、Sobel算子、Laplacian算子、Canny算子 代码python
以下是对应算子的简单示例代码:
Roberts算子:
```python
from scipy import ndimage
import numpy as np
def robert_cross(image):
roberts_cross_v = np.array( [[-1,0],[0,1]], dtype=np.int32 )
roberts_cross_h = np.array( [[0,-1],[1,0]], dtype=np.int32 )
vertical = ndimage.convolve( image, roberts_cross_v )
horizontal = ndimage.convolve( image, roberts_cross_h )
return np.sqrt( np.square(horizontal) + np.square(vertical) )
```
Prewitt算子:
```python
from scipy import ndimage
import numpy as np
def prewitt(image):
vert_prewitt = np.array([[-1,-1,-1],[0,0,0],[1,1,1]])
hori_prewitt = np.array([[-1,0,1],[-1,0,1],[-1,0,1]])
prewitt_vert = ndimage.convolve(image, vert_prewitt)
prewitt_hori = ndimage.convolve(image, hori_prewitt)
return np.sqrt( np.square(prewitt_vert) + np.square(prewitt_hori) )
```
Sobel算子:
```python
from scipy import ndimage
import numpy as np
def sobel(image):
vert_sobel = np.array([[-1,-2,-1],[0,0,0],[1,2,1]])
hori_sobel = np.array([[-1,0,1],[-2,0,2],[-1,0,1]])
sobel_vert = ndimage.convolve(image, vert_sobel)
sobel_hori = ndimage.convolve(image, hori_sobel)
return np.sqrt( np.square(sobel_vert) + np.square(sobel_hori) )
```
Laplacian算子:
```python
from scipy import ndimage
import numpy as np
def laplacian(image):
laplacian_kernal = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]])
filtered_img = ndimage.convolve(image, laplacian_kernal)
return filtered_img
```
Canny算子:
```python
from scipy import ndimage
import numpy as np
def canny(image, low_threshold=0, high_threshold=255):
img_smooth = ndimage.gaussian_filter(image, sigma=1.4)
img_x = ndimage.sobel(img_smooth, axis=0)
img_y = ndimage.sobel(img_smooth, axis=1)
gradient_magnitude = np.hypot(img_x, img_y)
gradient_direction = np.arctan2(img_y, img_x)
gradient_direction = np.rad2deg(gradient_direction)
gradient_direction[gradient_direction < 0] += 180
max_magnitude = np.max(gradient_magnitude)
if high_threshold > max_magnitude:
high_threshold = max_magnitude
if low_threshold > high_threshold:
low_threshold, high_threshold = high_threshold, low_threshold
row, col = image.shape
canny_img = np.zeros((row, col), dtype=np.uint8)
weak = np.int32(50)
strong = np.int32(255)
strong_i, strong_j = np.where(gradient_magnitude >= high_threshold)
zeros_i, zeros_j = np.where(gradient_magnitude < low_threshold)
weak_i, weak_j = np.where((gradient_magnitude <= high_threshold) & (gradient_magnitude >= low_threshold))
canny_img[strong_i, strong_j] = strong
canny_img[weak_i, weak_j] = weak
for i in range(1, row-1):
for j in range(1, col-1):
if canny_img[i,j] == weak:
if (canny_img[i+1, j-1] == strong) or (canny_img[i+1, j] == strong) or (canny_img[i+1, j+1] == strong) \
or (canny_img[i, j-1] == strong) or (canny_img[i, j+1] == strong) \
or (canny_img[i-1, j-1] == strong) or (canny_img[i-1, j] == strong) or (canny_img[i-1, j+1] == strong):
canny_img[i, j] = strong
else:
canny_img[i, j] = 0
return canny_img
```
使用MATLAB实现Roberts算子、Prewitt算子、Sobel算子、Laplacian算子、Canny算子的程序
以下是使用MATLAB实现Roberts算子、Prewitt算子、Sobel算子、Laplacian算子、Canny算子的程序。
Roberts算子:
```matlab
% 读取图像
img = imread('image.jpg');
% 将图像转化为灰度图像
gray_img = rgb2gray(img);
% Roberts算子
roberts_x = [1 0; 0 -1];
roberts_y = [0 1; -1 0];
% 计算x方向和y方向的梯度
roberts_grad_x = conv2(double(gray_img), roberts_x, 'same');
roberts_grad_y = conv2(double(gray_img), roberts_y, 'same');
% 计算梯度的幅值
roberts_grad = sqrt(roberts_grad_x.^2 + roberts_grad_y.^2);
% 显示结果
imshow(uint8(roberts_grad));
```
Prewitt算子:
```matlab
% 读取图像
img = imread('image.jpg');
% 将图像转化为灰度图像
gray_img = rgb2gray(img);
% Prewitt算子
prewitt_x = [-1 0 1; -1 0 1; -1 0 1];
prewitt_y = [-1 -1 -1; 0 0 0; 1 1 1];
% 计算x方向和y方向的梯度
prewitt_grad_x = conv2(double(gray_img), prewitt_x, 'same');
prewitt_grad_y = conv2(double(gray_img), prewitt_y, 'same');
% 计算梯度的幅值
prewitt_grad = sqrt(prewitt_grad_x.^2 + prewitt_grad_y.^2);
% 显示结果
imshow(uint8(prewitt_grad));
```
Sobel算子:
```matlab
% 读取图像
img = imread('image.jpg');
% 将图像转化为灰度图像
gray_img = rgb2gray(img);
% Sobel算子
sobel_x = [-1 0 1; -2 0 2; -1 0 1];
sobel_y = [-1 -2 -1; 0 0 0; 1 2 1];
% 计算x方向和y方向的梯度
sobel_grad_x = conv2(double(gray_img), sobel_x, 'same');
sobel_grad_y = conv2(double(gray_img), sobel_y, 'same');
% 计算梯度的幅值
sobel_grad = sqrt(sobel_grad_x.^2 + sobel_grad_y.^2);
% 显示结果
imshow(uint8(sobel_grad));
```
Laplacian算子:
```matlab
% 读取图像
img = imread('image.jpg');
% 将图像转化为灰度图像
gray_img = rgb2gray(img);
% Laplacian算子
laplacian = [-1 -1 -1; -1 8 -1; -1 -1 -1];
% 计算梯度
laplacian_grad = conv2(double(gray_img), laplacian, 'same');
% 显示结果
imshow(uint8(laplacian_grad));
```
Canny算子:
```matlab
% 读取图像
img = imread('image.jpg');
% 将图像转化为灰度图像
gray_img = rgb2gray(img);
% Canny算子
canny_grad = edge(gray_img, 'canny');
% 显示结果
imshow(canny_grad);
```
阅读全文