用RBM识别尾矿坝异常模式,给出他的代码
时间: 2024-05-11 09:19:19 浏览: 143
以下是使用Python实现的RBM模型,用于尾矿坝异常模式识别:
首先,需要导入必要的库:
```python
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
```
接着,读取尾矿坝数据集,将数据集划分为训练集和测试集:
```python
data = pd.read_csv('tailings_dataset.csv')
X = data.drop(['Class'], axis=1).values
y = data['Class'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
然后,定义RBM类:
```python
class RBM:
def __init__(self, n_visible, n_hidden, learning_rate=0.1, batch_size=10, n_epochs=100):
self.n_visible = n_visible
self.n_hidden = n_hidden
self.learning_rate = learning_rate
self.batch_size = batch_size
self.n_epochs = n_epochs
self.W = tf.Variable(tf.random.normal(shape=(n_visible, n_hidden), mean=0.0, stddev=0.01))
self.v_bias = tf.Variable(tf.zeros(shape=(n_visible, 1)))
self.h_bias = tf.Variable(tf.zeros(shape=(n_hidden, 1)))
def sigmoid(self, x):
return 1 / (1 + tf.exp(-x))
def prob_h_given_v(self, v):
return self.sigmoid(tf.matmul(v, self.W) + self.h_bias)
def prob_v_given_h(self, h):
return self.sigmoid(tf.matmul(h, tf.transpose(self.W)) + self.v_bias)
def sample_prob(self, probs):
return tf.nn.relu(tf.sign(probs - tf.random.uniform(shape=tf.shape(probs))))
def gibbs_sampling(self, v):
h_probs = self.prob_h_given_v(v)
h_states = self.sample_prob(h_probs)
v_probs = self.prob_v_given_h(h_states)
v_states = self.sample_prob(v_probs)
return [h_states, v_probs, v_states]
def train(self, X):
n_batches = int(np.ceil(len(X) / self.batch_size))
X_tf = tf.convert_to_tensor(X, dtype=tf.float32)
for epoch in range(self.n_epochs):
for batch in range(n_batches):
v0 = X_tf[batch * self.batch_size:(batch + 1) * self.batch_size]
h0_probs = self.prob_h_given_v(v0)
h0_states = self.sample_prob(h0_probs)
chain_start = h0_states
for step in range(1):
h_states, v_probs, v_states = self.gibbs_sampling(chain_start)
chain_start = v_states
positive_grad = tf.matmul(tf.transpose(v0), h0_probs)
negative_grad = tf.matmul(tf.transpose(v_states), h_states)
W_grad = (positive_grad - negative_grad) / tf.cast(tf.shape(v0)[0], tf.float32)
vb_grad = tf.reduce_mean(v0 - v_states, axis=0, keepdims=True)
hb_grad = tf.reduce_mean(h0_probs - h_states, axis=0, keepdims=True)
self.W.assign_add(self.learning_rate * W_grad)
self.v_bias.assign_add(self.learning_rate * vb_grad)
self.h_bias.assign_add(self.learning_rate * hb_grad)
```
最后,实例化RBM类并进行训练:
```python
rbm = RBM(n_visible=X_train.shape[1], n_hidden=10, learning_rate=0.01, batch_size=20, n_epochs=1000)
rbm.train(X_train)
```
可以使用训练好的模型进行预测:
```python
h_probs = rbm.prob_h_given_v(X_test)
h_states = rbm.sample_prob(h_probs)
v_probs = rbm.prob_v_given_h(h_states)
v_states = rbm.sample_prob(v_probs)
y_pred = [1 if np.any(x) else 0 for x in v_states]
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```
完整代码如下所示:
阅读全文