不使用机器学习包进行adaboost算法的python实现
时间: 2023-09-20 10:03:31 浏览: 143
可以通过以下代码实现不使用机器学习包的Adaboost算法的Python实现:
```
import numpy as np
# 生成训练数据
def getData():
X = np.array([
[-1, -1],
[-1, 1],
[1, -1],
[1, 1]
])
y = np.array([1, 1, -1, -1])
return X, y
# 实现Adaboost算法
def Adaboost(X, y, T):
n_samples, n_features = X.shape
w = np.ones(n_samples) / n_samples
models = []
for t in range(T):
# 训练弱分类器
model = {'feature': None, 'threshold': None, 'alpha': None}
min_error = float('inf')
for f in range(n_features):
feature_vals = np.unique(X[:, f])
for threshold in feature_vals:
predicted = np.ones(n_samples)
predicted[X[:, f] < threshold] = -1
error = np.sum(w[y != predicted])
if error < min_error:
min_error = error
model['feature'] = f
model['threshold'] = threshold
model['alpha'] = 0.5 * np.log((1 - min_error) / min_error)
# 更新权重和模型
predicted = np.ones(n_samples)
predicted[X[:, model['feature']] < model['threshold']] = -1
w *= np.exp(-model['alpha'] * y * predicted)
w /= np.sum(w)
models.append(model)
return models
# 对测试数据进行预测
def predict(X_test, models):
n_samples = X_test.shape[0]
y_pred = np.zeros(n_samples)
for model in models:
predicted = np.ones(n_samples)
predicted[X_test[:, model['feature']] < model['threshold']] = -1
y_pred += model['alpha'] * predicted
y_pred = np.sign(y_pred)
return y_pred
# 测试
X_train, y_train = getData()
models = Adaboost(X_train, y_train, T=3)
X_test = np.array([[-1, -1], [-1, 1], [1, -1], [1, 1]])
y_pred = predict(X_test, models)
print(y_pred)
```
注意,这只是一个简单的Adaboost实现,仅供参考。在实际应用中,我们通常会使用机器学习包中已经实现好的Adaboost算法,以获得更好的性能和更广泛的应用场景。
阅读全文