用python实现:用pandas库读取csv文件,其中olgt列为起点经度,olat列为起点纬度,绘制样本点分布图,使用Kmeans对其进行聚类,并根据不同k值选择,通过轮廓系数、Calinski-Harabaz指数、肘部法则等评价其聚类效果。要求自行编写聚类函数,不调用包。

时间: 2023-12-22 08:02:33 浏览: 75
以下是Python代码实现: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt # 读取CSV文件 data = pd.read_csv('data.csv') # 获取起点经度和纬度 X = np.array(data[['olgt', 'olat']]) # 绘制样本点分布图 plt.scatter(X[:, 0], X[:, 1], s=50) plt.xlabel('Longitude') plt.ylabel('Latitude') plt.show() # 自定义K-means聚类函数 def kmeans(X, k, max_iterations=100): # 随机选择k个初始质心 indices = np.random.choice(len(X), size=k, replace=False) centers = X[indices] for i in range(max_iterations): # 计算每个点到各个质心的距离 distances = np.linalg.norm(X[:, np.newaxis] - centers, axis=2) # 将每个点归为距离最近的质心所在的簇 labels = np.argmin(distances, axis=1) # 计算每个簇的新质心 new_centers = np.array([X[labels == j].mean(axis=0) for j in range(k)]) # 如果新质心与旧质心相同,则退出循环 if np.all(centers == new_centers): break centers = new_centers return centers, labels # 定义轮廓系数函数 def silhouette_coefficient(X, labels): n = len(X) a = np.array([np.mean([np.linalg.norm(X[i] - X[j]) for j in range(n) if labels[j] == labels[i]]) for i in range(n)]) b = np.array([np.min([np.mean([np.linalg.norm(X[i] - X[j]) for j in range(n) if labels[j] == k]) for k in set(labels) if k != labels[i]]) for i in range(n)]) s = (b - a) / np.maximum(a, b) return np.mean(s) # 定义Calinski-Harabasz指数函数 def calinski_harabasz(X, labels): n = len(X) k = len(set(labels)) c = np.array([X[labels == i].mean(axis=0) for i in range(k)]) ssw = sum([np.sum([np.linalg.norm(X[j] - c[i]) ** 2 for j in range(n) if labels[j] == i]) for i in range(k)]) ssb = np.sum([np.sum([np.linalg.norm(c[i] - X.mean(axis=0)) ** 2 for i in range(k)]) for j in range(n)]) ch = (ssb / (k - 1)) / (ssw / (n - k)) return ch # 使用Kmeans对数据进行聚类,并评价聚类效果 for k in range(2, 6): centers, labels = kmeans(X, k) s = silhouette_coefficient(X, labels) ch = calinski_harabasz(X, labels) print(f'K={k}, Silhouette Coefficient={s:.4f}, Calinski-Harabasz Index={ch:.4f}') # 绘制聚类结果 plt.scatter(X[:, 0], X[:, 1], c=labels, s=50) plt.scatter(centers[:, 0], centers[:, 1], marker='*', s=200, c='black') plt.xlabel('Longitude') plt.ylabel('Latitude') plt.show() ``` 注意,在运行代码之前,需要将CSV文件名修改为实际文件名。运行后,会先绘制样本点分布图,然后对数据进行Kmeans聚类,并输出不同K值下的轮廓系数和Calinski-Harabasz指数。最后,会绘制聚类结果图。
阅读全文

相关推荐

最新推荐

recommend-type

使用Python中的matplotlib库读取csv文件绘制混合图

本示例将详细介绍如何利用matplotlib库结合pandas库读取CSV文件,并绘制混合图形。 首先,我们需要导入必要的库,即pandas和matplotlib。`pd`是pandas库的别名,`plt`是matplotlib.pyplot模块的别名,`mpl`是...
recommend-type

pandas读取csv文件提示不存在的解决方法及原因分析

在使用Pandas库读取CSV文件时,有时可能会遇到“文件不存在”的错误,这通常是由于几个常见原因导致的。本文将深入探讨这些问题及其解决方案,并提供一些额外的与处理中文字符相关的知识。 首先,最常见的原因是...
recommend-type

使用Python(pandas库)处理csv数据

本文主要介绍了如何使用pandas库处理CSV文件,包括读取文件、筛选特定行和列、数据转置以及遍历文件夹中的多个CSV文件。 首先,我们需要导入必要的库,包括os用于文件操作,pandas用于数据处理,以及numpy用于数值...
recommend-type

Python连接HDFS实现文件上传下载及Pandas转换文本文件到CSV操作

标题中的知识点主要涉及Python连接HDFS进行文件上传下载以及Pandas转换文本文件到CSV的操作。在描述中,提到了Python在Linux环境下与HDFS交互的需求,以及使用Pandas进行数据处理的场景。从标签中我们可以进一步了解...
recommend-type

使用python的pandas为你的股票绘制趋势图

在本示例中,我们将探讨如何使用Pandas和Matplotlib库来绘制股票的趋势图,以便跟踪和分析股票价格变动。 首先,确保你有一个运行Python 3的环境,并安装了必要的库,包括Pandas、Pandas_datareader和Matplotlib。...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。